We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg 2 SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < < 11000 (angular scales 5 θ 1 ). These are the most precise measurements of the angular power spectra at > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg 2 of the SPT-SZ survey. We measure the tSZ power at 143 GHz to be D tSZ 3000 = 4.08 +0.58 −0.67 µK 2 and the kSZ power to be D kSZ 3000 = 2.9 ± 1.3 µK 2 . The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of ξ = 0.113 +0.057 −0.054 between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration ∆z < 5.4 at 95% CL.
Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravitywave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel -SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a non-zero correlation at 7.7σ significance. The correlation has an amplitude and scale-dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable. [2,3]. B modes are not generated at linear order in perturbation theory by the scalar perturbations which are the dominant source of CMB temperature and E-mode anisotropies. Because of this, B modes are of great interest as a clean probe of two more subtle signals: (1) primordial tensor perturbations in the early Universe [4,5], the measurement of which would provide a unique probe of the energy scale of inflation; and (2) gravitational lensing, which generates a distinctive nonGaussian B-mode signal [6] that can be used to measure the projected mass distribution and constrain cosmological parameters such as the sum of neutrino masses (for a review, see [7]).Previous experiments have placed upper limits on the B-mode polarization anisotropy [8][9][10][11]. In this Letter we present the first detection of B modes sourced by gravitational lensing, using first-season data from SPTpol, the polarization-sensitive receiver on the South Pole Telescope.Gravitational lensing remaps the observed position of CMB anisotropies asn →n+∇φ(n), where φ is the CMB lensing potential [12]. This remapping mixes some of the (relatively) large E-mode signal into B. The induced B mode at Fourier wavevector l B is given to first order in φ as [13]
We describe the observations and resultant galaxy cluster catalog from the 2770 deg 2 SPTpolExtended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete follow-up we have confirmed as clusters 244 of 266 candidates at a detection significance ξ5 and an additional 204systems at 4<ξ<5. The confirmed sample has a median mass of~´-M Mh 4.4 10 c 500 14 70 1 and a median redshift of z=0.49, and we have identified 44strong gravitational lenses in the sample thus far. Radio data are used to characterize contamination to the SZ signal; the median contamination for confirmed clusters is predicted to be ∼1% of the SZ signal at the ξ>4 threshold, and <4% of clusters have a predicted contamination >10% of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and we find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-SZ mass (l-M) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data-a difference significant at the 4σ level-with the relations intersecting at λ=60. The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses.
We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies ( 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.