ContextResults. The magnetic field is found to be globally horizontal with a relatively weak field strength (8-15 Gauss). On the other hand, the Ca II movie reveals turbulent-like motion that is not organized in specific parts of the prominence. We tested the addition of a turbulent magnetic component. This model is compatible with the polarimetric observations at those places where the plasma turbulence peaks. On the other hand, the Mg II line profiles show multiple peaks well separated in wavelength. This is interpreted by the existence of small threads along the line of sight with a large dispersion of discrete values of Doppler shifts, from 5 km s −1 (a quasi-steady component) to 60-80 km s −1 . Each peak corresponds to a Gaussian profile, and not to a reversed profile as was expected by the present non-LTE radiative transfer modeling. This is a very surprising behavior for the Mg II line observed in prominences. Conclusions. Turbulent fields on top of the macroscopic horizontal component of the magnetic field supporting the prominence give rise to the complex dynamics of the plasma. The plasma with the high velocities (70 km s −1 to 100 km s −1 if we take into account the transverse velocities) may correspond to condensation of plasma along more or less horizontal threads of the arch-shape structure visible in 304 Å. The steady flows (5 km s −1 ) would correspond to a more quiescent plasma (cool and prominence-corona transition region) of the prominence packed into dips in horizontal magnetic field lines. The very weak secondary peaks in the Mg II profiles may reflect the turbulent nature of parts of the prominence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.