We present the first measurement of the planet frequency beyond the "snow line," for the planet-to-star mass-ratio interval −4.5 < log q < −2, corresponding to the range of ice giants to gas giants. We find d 2 N pl d log q d log s = (0.36 ± 0.15) dex −2 at the mean mass ratio q = 5 × 10 −4 with no discernible deviation from a flat (Öpik's law) distribution in logprojected separation s. The determination is based on a sample of six planets detected from intensive follow-up observations of high-magnification (A > 200) microlensing events during 2005-2008. The sampled host stars have a typical mass M host ∼ 0.5 M , and detection is sensitive to planets over a range of planet-star-projected separations (s −1 max R E , s max R E), where R E ∼ 3.5 AU (M host /M) 1/2 is the Einstein radius and s max ∼ (q/10 −4.3) 1/3. This corresponds to deprojected separations roughly three times the "snow line." We show that the observations of these events have the properties of a "controlled experiment," which is what permits measurement of absolute planet frequency. High-magnification events are rare, but the survey-plus-follow-up high-magnification channel is very efficient: half of all high-mag events were successfully monitored and half of these yielded planet detections. The extremely high sensitivity of high-mag events leads to a policy of monitoring them as intensively as possible, independent of whether they show evidence of planets. This is what allows us to construct an unbiased sample. The planet frequency derived from microlensing is a factor 8 larger than the one derived from Doppler studies at factor ∼25 smaller star-planet separations (i.e., periods 2-2000 days). However, this difference is basically consistent with the gradient derived from Doppler studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in planet-star separation, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the solar system, our sample would have yielded 18.2 planets (11.4 "Jupiters," 6.4 "Saturns," 0.3 "Uranuses," 0.2 "Neptunes") including 6.1 systems with two or more planet detections. This compares to six planets including one twoplanet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.
We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q = [9.5 ± 2.1] × 10 −5 via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M l = 0.64 +0.21 −0.26 M and D l = 5.9 +0.9 −1.4 kpc, respectively, so the mass and separation of the planet are M p = 20 +7 −8 M ⊕ and a = 3.3 +1.4 −0.8 AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN pl /d log q ∝ q −0.7±0.2 with a 95% confidence level upper limit of n < −0.35 (where dN pl /d log q ∝ q n). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
We present the first example of binary microlensing for which the parameter measurements can be verified (or contradicted) by future Doppler observations. This test is made possible by a confluence of two relatively unusual circumstances. First, the binary lens is bright enough (I = 15.6) to permit Doppler measurements. Second, we measure not only the usual seven binary-lens parameters, but also the "microlens parallax" (which yields the binary mass) and two components of the instantaneous orbital velocity. Thus, we measure, effectively, six "Kepler+1" parameters (two instantaneous positions, two instantaneous velocities, the binary total mass, and the mass ratio). Since Doppler observations of the brighter binary component determine five Kepler parameters (period, velocity amplitude, eccentricity, phase, and position of periapsis), while the same spectroscopy yields the mass of the primary, the combined Doppler + microlensing observations would be overconstrained by 6 + (5 + 1) − (7 + 1) = 4 degrees of freedom. This makes possible an extremely strong test of the microlensing solution. We also introduce a uniform microlensing notation for single and binary lenses, define conventions, summarize all known microlensing degeneracies, and extend a set of parameters to describe full Keplerian motion of the binary lenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.