The SARS-CoV-2 pandemic, which came to Russia in March 2020, is accompanied by morbidity level changes and can be tracked using serological monitoring of a representative population sample from Federal Districts (FDs) and individual regions. In a longitudinal cohort study conducted in 26 model regions of Russia, distributed across all FDs, we investigated the distribution and cumulative proportions of individuals with antibodies (Abs) to the SARS-CoV-2 nucleocapsid antigen (Ag), in the period from June to December 2020, using a three-phase monitoring process. In addition, during the formation of the cohort of volunteers, the number of seropositive convalescents, persons who had contact with patients or COVID-19 convalescents, and the prevalence of asymptomatic forms of infection among seropositive volunteers were determined. According to a uniform methodology, 3 mL of blood was taken from the examined individuals, and plasma was separated, from which the presence of Abs to nucleocapsid Ag was determined on a Thermo Scientific Multiascan FC device using the “ELISA anti-SARS-CoV-2 IgG” reagent set (prod. Scientific Center for Applied Microbiology and Biotechnology), in accordance with the developer’s instructions. Volunteers (74,158) were surveyed and divided into seven age groups (1–17, 18–29, 30–39, 40–49, 59–59, 60–69, and 70+ years old), among whom 14,275 were identified as having antibodies to SARS-CoV-2. The average percent seropositive in Russia was 17.8% (IQR: 8.8–23.2). The largest proportion was found among children under 17 years old (21.6% (IQR: 13.1–31.7). In the remaining groups, seroprevalence ranged from 15.6% (IQR: 8–21.1) to 18.0% (IQR: 13.4–22.6). During monitoring, three (immune) response groups were found: (A) groups with a continuous increase in the proportion of seropositive; (B) those with a slow rate of increase in seroprevalence; and (C) those with a two-phase curve, wherein the initial increase was replaced by a decrease in the percentage of seropositive individuals. A significant correlation was revealed between the number of COVID-19 convalescents and contact persons, and between the number of contacts and healthy seropositive volunteers. Among the seropositive volunteers, more than 93.6% (IQR: 87.1–94.9) were asymptomatic. The results show that the COVID-19 pandemic is accompanied by an increase in seroprevalence, which may be important for the formation of herd immunity.
The synthesis, characterisation, and isolation of 1,1′,2-tribromoferrocene and 1,1′,2,2′-tetrabromoferrocene, which are key synthons in ferrocene chemistry, are described. These compounds are prepared using α-halide assisted lithiation. The crystal structures of 1,1′,2-tribromoferrocene, 1,1′,2,2′-tetrabromoferrocene, 1,1′-dibromoruthenocene, and 1,1′,2,2′-tetrabromoruthenocene have been determined and are reported together with a brief discussion of the intramolecular forces involved in the crystal structures.
The novel coronavirus (SARS-CoV-2) pandemic, dubbed COVID-19, has become one of the most serious challenges for human populations in the vast majority of countries worldwide. Rapid spreading and increased mortality related to it required new approaches to manage epidemic processes on a global scale. One of such approaches was based on analyzing SARS-CoV-2 seroprevalence associated with COVID-19. Our aim was to summarize the results on assessing seroprevalence to the SARS-CoV-2 nucleocapsid antigen (Nc) in residents from 26 regions of the Russian Federation, carried out during the first wave of the COVID-19 epidemic.Materials and methods. Seroprevalence distribution was examined in 26 model regions of the Russian Federation according to the unified method developed by the Rospotrebnadzor with the participation of the Federal State Institution Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology. Such approach implied formation of a group of volunteer subjects in model geographic region who were tested by ELISA for anti-Nc serum antibody level in peripheral blood. Analyzed primary data obtained in separate regions were either accepted for publication or released.Results. The current paper finalizes the data obtained in all 26 regions of the Russian Federation. The total SARS-CoV-2 seroprevalence was 19.5 (10.0–25.6)% with the maximum and minimum value found in the Kaliningrad Region and the Republic of Crimea, respectively (50.2% vs. 4.3%). A pattern of age-related seroprevalence distribution indicates insignificant predominance of seroprevalence among subjects of 1–17 years old: 22.1 (13.1–31.8)%. Among COVID-19 convalescents positive for SARS-CoV Nc antibodies it reached 60.0 (40.0–73.3)%. The number of contact persons comprised 6285 subjects or 8.5% of total volunteer cohort, with the level of seroprevalence reaching up to 25.3 (17.95–35.8)%. A direct correlation was revealed between levels of seroprevalence in convalescent and contact volunteers. In addition, the reproductive number for SARS-CoV was calculated comprising 5.8 (4.3–8.5) suggesting that one convalescent subject can infect at least 4 healthy individuals. A high level of asymptomatic forms of COVID-19 among seropositive subjects was confirmed empirically comprising up to 93.6 (87.1–94.9)%.Conclusion. A single cross-sectional study performed during 2020 June–August timeframe allowed to assess pattern of sex- and agerelated COVID-19 seroprevalence for general population in 26 Russian Federation regions. The data obtained may serve as a basis for the longitudinal cohort investigation with serial subject sampling. The timing and duration of study will be determined by dynamics of ongoing COVID-19 epidemic.
Background. The ongoing pandemic of the novel coronavirus infection (COVID-19) draws attention to the significance of molecular and genetic monitoring of the SARS-CoV-2 spread among the population of the Russian Federation. The aim of the study was to analyze the dynamics of circulation of SARS-CoV-2 genetic variants in Russia.Materials and methods. The analysis of the circulation dynamics for SARS-CoV-2 genetic variants in Russia was carried out, covering the period from 28/12/2020 to 26/6/2022. The analysis included the data from Rospotrebnadzor Report No. 970 "Information about Infectious Diseases in Individuals with Suspected Novel Coronavirus Infection" and the Virus Genome Aggregator of Russia (VGARus). The presence of SARS-CoV-2 RNA was confirmed by the real-time reverse transcription polymerase chain reaction. The primer panels developed at the Central Research Institute of Epidemiology were used for amplification of genomic fragments and the subsequent sequencing.Results and discussion. Using the Russian VGARus platform developed by the Central Research Institute of Epidemiology, we received the data on mutational variability of SARS-CoV-2. By monitoring the circulation of SARS-CoV-2 genetic variants in Russia from 28/12/2020 to 26/6/2022, we found that Delta and Omicron genetic variants prevailed at different stages of the epidemic.Conclusion. The data of molecular and genetic studies are an essential component of epidemiological surveillance, being critically important for making executive decisions aimed at prevention of further spread of SARS-CoV-2 and laying the groundwork for creating new vaccines.
Background. The ongoing pandemic of a new coronavirus infection (COVID-19) determines the relevance of the analysis of epidemiological patterns of SARS-CoV-2 spread among the population of the Russian Federation.Aim — study of the manifestations of the epidemic process of COVID-19 in the Russian Federation in 2020–2022.Materials and methods. A retrospective epidemiological analysis of the incidence of COVID-19 in the Russian Federation was carried out from 03/30/2020 to 04/24/2022. The data from the Rospotrebnadzor report No. 970 “Information on cases of infectious diseases in persons with suspected new coronavirus infection”, information portal Stopcoronavirus.rf, etc. were used. The presence of SARS-CoV-2 RNA was confirmed by real-time RT-PCR.Results and discussion. The analysis of the manifestations of the epidemic process of COVID-19 in the Russian Federation in 2020–2022 showed the presence of two stages which differed depending on the influence of the biological factor and the ongoing anti-epidemic measures. There was a pronounced trend in the development of the epidemic process, starting from megacities (Moscow, Moscow region and St. Petersburg), which are major transport hubs and centers of migration activity of the population, to the regions of the Russian Federation. The SARS-CoV-2 pathogenicity has been shown to decrease with each subsequent cycle of the rise in the incidence of COVID-19 against the background of the increased contagiousness of the virus.Conclusion. As a result of the study, risk areas (megacities) and risk groups were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.