A new search for the diffuse supernova neutrino background (DSNB) flux has been conducted at Super-Kamiokande (SK), with a 22.5 × 2970-kton•day exposure from its fourth operational phase IV. The new analysis improves on the existing background reduction techniques and systematic uncertainties and takes advantage of an improved neutron tagging algorithm to lower the energy threshold compared to the previous phases of SK. This allows for setting the world's most stringent upper limit on the extraterrestrial νe flux, for neutrino energies below 31.3 MeV. The SK-IV results are combined with the ones from the first three phases of SK to perform a joint analysis using 22.5 × 5823 kton•days of data. This analysis has the world's best sensitivity to the DSNB νe flux, comparable to the predictions from various models. For neutrino energies larger than 17.3 MeV, the new combined 90% C.L. upper limits on the DSNB νe flux lie around 2.7 cm −2 •sec −1 , strongly disfavoring the most optimistic predictions. Finally, potentialities of the gadolinium phase of SK and the future Hyper-Kamiokande experiment are discussed.
The recurrent nova (RN) V3890 Sgr was observed during the seventh day after the onset of its most recent outburst, with the Chandra ACIS-S camera and High Energy Transmission Gratings. A rich emission line spectrum was detected, due to transitions of Fe-L and K-shell ions ranging from neon to iron. The measured absorbed flux is ≈10 −10 erg cm −2 s −1 in the 1.4-15 Årange (0.77-8.86 keV). The line profiles are asymmetric, blueshifted, and skewed toward the blue side, as if the ejecta moving toward us are less absorbed than the receding ejecta. The full width at half-maximum of most emission lines is 1000-1200 km s −1 , with some extended blue wings. The spectrum is thermal and consistent with a plasma in collisional ionization equilibrium with column density 1.3×10 22 cm −2 and at least two components at temperatures of about 1 and 4 keV, possibly a forward and a reverse shock, or regions with differently mixed ejecta and a red giant wind. The spectrum is remarkably similar to the symbiotic RNe V745 Sco and RS Oph, but we cannot distinguish whether the shocks occurred at a distance of a few au from the red giant, or near the giant's photosphere, in a high-density medium containing only a low mass. The ratios of the flux in lines of aluminum, magnesium, and neon relative to the flux in lines of silicon and iron probably indicate a carbon-oxygen white dwarf.
Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.