We present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR-2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µK CMB √ s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ (r) = 6 × 10 −3 at r = 0.1 and ∑ m ν (σ = 1) to 40 meV.
Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial Cosmic Microwave Background (CMB) and thereby induces new, small-scale B -mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even-and odd-parity E -and B -mode polarization mapped over ∼ 30 square degrees of the sky measured by the Polarbear experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B -modes is found at 4.2σ (stat.+sys.) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda Cold Dark Matter (ΛCDM) cosmological model. This measurement demonstrates 2 a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B -mode signal in searches for primordial gravitational waves.Introduction: As Cosmic Microwave Background (CMB) photons traverse the Universe, their paths are gravitationally deflected by large-scale structures. By measuring the resulting changes in the statistical properties of the CMB anisotropies, maps of this gravitational lensing deflection, which traces large-scale structure, can be reconstructed. Gravitational lensing of the CMB has been detected in the CMB temperature anisotropy in several ways: in the smoothing of the acoustic peaks of the temperature power spectrum [1-3], in cross-correlations with tracers of the large-scale matter distribution [4][5][6][7][8][9][10], and in the four-point correlation function of CMB temperature maps [11][12][13][14].The South Pole Telescope (SPT) collaboration recently reported a detection of lensed polarization using the cross-correlation between maps of CMB polarization and sub-mm maps of galaxies from Herschel/SPIRE [15]. A companion paper to this one has also shown the evidence of the CMB lensing-Cosmic Infrared Background crosscorrelation results using Polarbear data [16], finding good agreement with the SPT measurements. This crosscorrelation is immune to several instrumental systematic effects but the cosmological interpretation of this measurement requires assumptions about the relation of submm galaxies to the underlying mass distribution [17].In this Letter, we present the first direct evidence for gravitational lensing of the polarized CMB using data from the Polarbear experiment. We present power spectra of the lensing deflection field for two four-point estimators using only CMB polarization data, and tests for spurious systematic contamination of these estimators. We combine the two estimators to increase the signal-to-noise of the lensing detection.CMB lens...
We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the Polarbear experiment in its first season of observations. We find that the anisotropic cosmic 2 birefringence signal from any parity violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The Polarbear non-detection translates into a 95% confidence level (C.L.) upper limit of 93 nano-Gauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the Polarbear measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at sub-degree scales.
We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the Polarbear experiment in Chile. The faint B-mode polarization signature carries information about the universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early universe. Our measurement covers the angular multipole range 500 < < 2100 and is based on observations of an effective sky area of 25 deg 2 with 3. 5 resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A BB to the measured band powers, A BB = 1.12 ± 0.61(stat) +0.04 −0.12 (sys) ± 0.07(multi), where A BB = 1 is the fiducial wmap-9 ΛCDM value. In this expression, "stat" refers to the statistical uncertainty, "sys" to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and "multi" to the calibration uncertainties that have a multiplicative effect on the measured amplitude A BB .
We report an improved measurement of the cosmic microwave background B-mode polarization power spectrum with the POLARBEARexperiment at 150GHz. By adding new data collected during the second season of observations (2013)(2014) to re-analyzed data from the first season (2012-2013), we have reduced twofold the band-power uncertainties. The band powers are reported over angular multipoles ℓ 500 2100, where the dominant B-mode signal is expected to be due to the gravitational lensing of E-modes. We reject the null hypothesis of no B-mode polarization at a confidence of 3.1σincluding both statistical and systematic uncertainties. We test the consistency of the measured B-modes with the Λ Cold Dark Matter (ΛCDM) framework by fitting for a single lensing amplitude parameter A L relative to the Planck2015best-fit model prediction. We obtain = -+ -+
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.