The crustal structure of the Anatolian plateau in Eastern Turkey is investigated using receiver functions obtained from the teleseismic recordings of a 29 broadband PASSCAL temporary network, i.e., the Eastern Turkey Seismic Experiment [ETSE]. The S‐wave velocity structure was estimated from the stacked receiver functions by performing a 6‐plane layered grid search scheme in order to model the first order features in the receiver functions with minimum trade‐off. We found no significant crustal root beneath the western portion of the network, but there is some evidence of crustal thickening in the northern portion of the network. We found an average crustal thickness of 45 km and an average crustal shear velocity of 3.7 km/s for the entire eastern Anatolian plateau. Within the Anatolian plateau we found evidence of a prominent low velocity zone where the crust thickness is approximately 46 km. These results suggests that the 2 km high topography across the Anatolian plateau is dynamically supported because most of the plateau appears to be isostatically under‐compensated. Also, there appears to be a region of thin crust at the easternmost edge of the Anatolian plateau that may be a relic from the accretion of island arcs to the Eurasian plate.
Using finite-frequency teleseismic P-wave tomography, we developed a new three-dimensional (3-D) velocity model of the mantle beneath Anatolia down to 900 km depth that reveals the structure and behavior of the subducting African lithosphere beneath three convergent domains of Anatolia: the Aegean, Cyprean, and Bitlis-Zagros domains. The Aegean slab has a relatively simple structure and extends into the lower mantle; the Cyprean slab has a more complex structure, with a western section that extends to the lower mantle with a consistent dip and an eastern section that is broken up into several pieces; and the Bitlis slab appears severely deformed, with only fragments visible in the mantle transition zone and uppermost lower mantle. In addition to the subducting slabs, high-amplitude slow velocity anomalies are imaged in the shallow mantle beneath recently active volcanic centers, and a prominent fast velocity anomaly dominates the shallow mantle beneath northern Anatolia and the southern Black Sea. As a whole, our model confirms the presence of well-established slow and fast velocity anomalies in the upper mantle beneath Anatolia and motivates two major findings about Eastern Mediterranean subduction: (1) Each of the slabs penetrates into the lower mantle, making the Eastern Mediterranean unique within the Mediterranean system, and (2) the distinct character of each slab segment represents different stages of subduction termination through progressive slab deformation. Our findings on the destructive processes of subduction termination and slab detachment have significant implications for understanding of the post detachment behavior of subducted lithosphere.
SUMMARY The interaction of the Arabian plate with the Eurasian plate has played a major role in building the young mountain belts along the Zagros–Bitlis continent–continent collision zone. Arabia's northward motion is considered to be the primary driving force behind the present‐day westerly escape of the Anatolian plate along the North and East Anatolian fault zones as well as the formation of the Turkish and the Iranian plateaux. In this study we mapped Pn‐wave velocity and anisotropy structures at the junction of the Arabian, Eurasian and African plates in order to elucidate the upper‐mantle dynamics in this region. Pn is a wave that propagates within the mantle lid of the lithosphere and is often used to infer the rheology and fabric of the mantle lithosphere. Applying strict selection criteria, we used arrival times of 166 000 Pn phases to invert for velocity and anisotropy in the region. Using a least‐squares tomographic code, these data were analysed to solve simultaneously for both velocity and azimuthal anisotropy in the mantle lithosphere. We found that most of the continental regions in our study area are underlain by low Pn velocity structures. Broad‐scale (∼500 km) zones of low (<8 km s−1) Pn velocity anomalies underlie the Anatolian plate, the Anatolian plateau, the Caucasus region, northwestern Iran and northwestern Arabia, and smaller scale (∼200 km), very low (<7.8 km s−1) Pn velocity zones underlie southern Syria, the Lesser Caucasus, the Isparta Angle, central Turkey and the northern Aegean Sea. The broad‐scale low‐velocity regions are interpreted to be hot and unstable mantle lid zones, whereas very low Pn velocity zones are interpreted to be regions of no mantle lid. The low and very low Pn velocity zones in eastern Turkey, northwestern Iran and the Caucasus region may be associated with the latest stage of intense volcanism that has been active since the Late Miocene. The low Pn velocity zones beneath the Anatolian plate, eastern Turkey and northwestern Iran may in part be a result of the subducted Tethyan oceanic lithosphere beneath Eurasia. We also found a major low‐velocity zone beneath northwestern Arabia and the Dead Sea fault system. We interpret this anomaly to be a possible extension of the hot and anomalous upper mantle of the Red Sea and East Africa rift system. High Pn velocities (8.1–8.4 km s−1) are observed to underlie the Mediterranean Sea, the Black Sea, the Caspian Sea, and the central and eastern Arabian plate. Observed Pn anisotropy showed a higher degree of lateral variation than did the Pn velocity structure. Although the Pn anisotropy varies even in a given tectonic region, in eastern Anatolia very low Pn velocity and Pn anisotropy structures appear to be coherent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.