Molecular cooling techniques face the hurdle of dissipating translational as well as internal energy in the presence of a rich electronic, vibrational, and rotational energy spectrum. In our experiment, we create a translationally ultracold, dense quantum gas of molecules bound by more than 1000 wave numbers in the electronic ground state. Specifically, we stimulate with 80% efficiency, a two-photon transfer of molecules associated on a Feshbach resonance from a Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range electrostatic bond of the Feshbach molecule is coherently transformed into a tight chemical bond. We demonstrate coherence of the transfer in a Ramsey-type experiment and show that the molecular sample is not heated during the transfer. Our results show that the preparation of a quantum gas of molecules in specific rovibrational states is possible and that the creation of a Bose-Einstein condensate of molecules in their rovibronic ground state is within reach.
The methods producing cold molecules from cold atoms tend to leave molecular ensembles with substantial residual internal energy. For instance, Cs 2 molecules initially formed via photoassociation of cold Cs atoms are in several vibrational levels, v, of the electronic ground state. Here we apply a broadband femtosecond laser that redistributes the vibrational population in the ground state via a few electronic excitation -spontaneous emission cycles. The laser pulses are shaped to remove the excitation frequency band of the v = 0 level, preventing re-excitation from that state. We observe a fast and efficient accumulation, ∼ 70% of the initially detected molecules, in the lowest vibrational level, v = 0, of the singlet electronic state. The validity of this incoherent depopulation pumping method is very general and opens exciting prospects for laser cooling and manipulation of molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.