Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
BackgroundTuberculosis represents a serious public health problem and a significant diagnostic and therapeutic challenge worldwide. Molecular diagnostic techniques are crucial in the World Health Organization’s new tuberculosis control strategy.This study aims to evaluate the performance of GeneXpert MTB/RIF (Cepheid Sunnyvale, CA, United States) in diagnosis of extra-pulmonary tuberculosis then compare it’s performance in detecting Rifampicin resistance to GenoType MTBDRplus (HAIN Life Sciences, Nehren, Germany).MethodsSamples from pulmonary and/or extra-pulmonary origins were analysed in a 21 months retrospective study. Samples were sent to the bacteriology laboratory for Mycobacterium tuberculosis detection using conventional bacteriological and molecular methods (GeneXpert MTB/RIF and MTBDRplus). Sensitivity and specificity were calculated for the stained smear and GeneXpert according to culture (Gold Standard) as well as for GeneXpert MTB/RIF in both negative and positive microscopy tuberculosis cases. Data’s statistical analysis was performed with SPSS13.0 software.ResultsSeven hundred fourteen patients’ samples were analysed; the average age was 47.21 ± 19.98 years with a male predominance (66.4%). Out of 714 samples: 285 were from pulmonary and 429 were from extra-pulmonary origins. The positivity rates for microscopy, GeneXpert MTB/RIF and culture were 12.88, 20.59 and 15.82%, respectively. These rates were 18.9, 23.85 and 20.35% for pulmonary samples and 9.71, 18.41 and 12.82% for extra-pulmonary samples, respectively. The sensitivity and specificity of GeneXpert MTB/RIF were almost the same in both pulmonary and extra-pulmonary samples (78.2 and 90.4%) and (79,3 and 90.3%) respectively.Rifampicin resistance rate found by GeneXpert MTB/RIF was 0.84%. Comparison of Rifampicin resistance obtained by GeneXpert MTB/RIF and Genotype MTBDRplus, showed 100% agreement between the two techniques for studied samples.ConclusionsThis confirms GeneXpert MTB/RIF advantage for tuberculosis diagnosis, particularly extra-pulmonary tuberculosis with negatively stained smear. The performance of GeneXpert and Genotype MTBDRplus are similar in detection of Rifampicin resistance. However, variability of detection performance according to tuberculosis endemicity deserves more attention in the choice of screening techniques of Rifampicin resistance, hence the interest of conducting comparative studies of detection performance under low and medium endemicity on large samples of tuberculosis populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.