In the present report we have analyzed whether human normal cord blood-derived mast cells (CBMC) could interact with bacterial products, especially lipopolysaccharide (LPS) from Escherichia coli and peptidoglycan (PGN) from Staphylococcus aureus, known as Tolllike receptor (TLR) 4 and TLR2 agonists, respectively. We found that both LPS and PGN induced significant release of not only tumor necrosis factor- § (TNF- § ), but also IL-5, IL-10 and IL-13 by human mast cells (MC). We also established that the stimulation of CBMC with LPS or with PGN is mediated through interactions with TLR4 or with TLR2, respectively. Thus, our data indicate that activation of either TLR2 or TLR4 pathway may lead to a pro-Th2 immune response. However, the release of TNF- § induced by LPS, conversely to PGN, required the priming of CBMC by IL-4 and the presence of serum components, in particular soluble CD14. Of interest, stimulation by PGN, but not by LPS, induced release of histamine by human MC. Altogether, these findings provide the first evidence that human MC differentially respond towards bacterial components, and that their responses depend on TLR pathways and reveal human specificities in the pattern of cytokine production.
Mastocytosis is a rare neoplastic disease characterized by a pathologic accumulation of tissue mast cells (MCs). Mastocytosis is often associated with a somatic point mutation in the Kit protooncogene leading to an Asp/Val substitution at position 816 in the kinase domain of this receptor. The contribution of this mutation to mastocytosis development remains unclear. In addition, the clinical heterogeneity presented by mastocytosis patients carrying the same mutation is unexplained. We report that a disease with striking similarities to human mastocytosis develops spontaneously in transgenic mice expressing the human Asp816Val mutant Kit protooncogene specifically in MCs. This disease is characterized by clinical signs ranging from a localized and indolent MC hyperplasia to an invasive MC tumor. In addition, bone marrow–derived MCs from transgenic animals can be maintained in culture for >24 mo and acquire growth factor independency for proliferation. These results demonstrate a causal link in vivo between the Asp816Val Kit mutation and MC neoplasia and suggest a basis for the clinical heterogeneity of human mastocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.