Background and aims: Mutations in BRAF have been linked with colorectal cancers (CRC) showing high level microsatellite instability (MSI-H). However, the distribution of BRAF mutations in MSI-H cancers remains to be clarified with respect to precursor lesions and the CpG island methylator phenotype (CIMP). Methods: Forty three hyperplastic polyps (HP), nine mixed polyps (MP), five serrated adenomas (SA), 28 conventional adenomas (AD), 18 hereditary non-polyposis colorectal cancers (HNPCC), and 127 sporadic CRC (46 MSI-H and 81 non-MSI-H) were collected from patients undergoing colectomy for either CRC or hyperplastic polyposis. Twenty five of 57 serrated lesions were derived from four patients with hyperplastic polyposis. HP were further subdivided according to recently documented morphological criteria into 27 classical HP and 16 variant lesions described as ''sessile serrated adenoma'' (SSA). All tumours were screened for BRAF activating mutations. Results: The BRAF mutation was more frequent in SSA (75%) and MP (89%) than in classical HP (19%), SA (20%), and AD (0%) (p,0.0001), and also in sporadic MSI-H cancers (76%) compared with HNPCC (0%) and sporadic non-MSI-H cancers (9%) (p,0.0001). The BRAF mutation was identified more often in CIMPhigh serrated polyps (72%) and CIMP-high CRC (77%) than in CIMP-low (30%) and CIMP-negative (13%) polyps (p = 0.002) as well as CIMP-low (18%) and CIMP-negative (0%) CRC (p,0.0001). Conclusions: The BRAF mutation was frequently seen in SSA and in sporadic MSI-H CRC, both of which were associated with DNA methylation. Sporadic MSI-H cancers may originate in SSA and not adenomas, and BRAF mutation and DNA methylation are early events in this ''serrated'' pathway.
In CRC, the methylation status of multiple promoters can be predicted through knowledge of BRAF and, to a lesser extent, KRAS activating mutations, indicating that these mutations are closely associated with different patterns of DNA hypermethylation. These changes may be important events in colorectal tumorigenesis.
Background-Colorectal cancers (CRCs) with the CpG island methylator phenotype (CIMP) often associate with epigenetic silencing of hMLH1 and an activating mutation in the BRAF gene. However, the current CIMP criteria are ambiguous, and often result in an underestimation of CIMP frequencies in CRCs. Since BRAF and KRAS belong to same signaling pathway, we hypothesized that not only mutations in BRAF, but mutant KRAS, may also associate with CIMP in CRC.
Background & Aims-DCC and UNC5C, Netrin-1 dependence receptors, perform an important role in intestinal epithelial biology. Both receptors frequently are down-regulated in colorectal cancer (CRC). Although CRCs frequently lose DCC owing to deletions at 18q, the mechanism for the UNC5C loss is poorly understood. We hypothesized that UNC5C is silenced epigenetically in CRC, and that there are interactions between losses of UNC5C and DCC in colorectal tumorigenesis.
Oncogenic PIK3CA mutations contribute to colorectal tumorigenesis by activating AKT signaling to decrease apoptosis and increase tumor invasion. A synergistic association of PIK3CA mutation with KRAS mutation has been suggested to increase AKT signaling and resistance to antiepidermal growth factor receptor inhibitor therapy for advanced colorectal cancer, although studies have been conflicting. We sought to clarify this by examining PIK3CA mutation frequency in relation to other key molecular features of defined pathways of tumorigenesis. PIK3CA mutation was assessed by high resolution melt analysis in 829 colorectal cancer samples and 426 colorectal polyps. Mutations were independently correlated with clinicopathological features including patient age, sex and tumor location as well as molecular features including microsatellite instability, KRAS and BRAF mutation, MGMT methylation and the CpG Island Methylator Phenotype (CIMP). Mutation of the helical (Exon 9) and catalytic (Exon 20) domain mutation hotspots were also examined independently. Overall, PIK3CA mutation was positively correlated with KRAS mutation (p < 0.001), MGMT methylation (p 5 0.007) and CIMP (p < 0.001). Novel, exon-specific associations linked Exon 9 mutations to a subgroup of cancers characterized by KRAS mutation, MGMT methylation and CIMP-Low, whilst Exon 20 mutations were more closely linked to features of serrated pathway tumors including BRAF mutation, microsatellite instability and CIMP-High or Low. PIK3CA mutations were uncommonly, but exclusively, seen in tubulovillous adenomas (4/124, 3.2%) and 1/4 (25.0%) tubulovillous adenomas with a focus of cancer. These data provide insight into the molecular events driving traditional versus serrated pathway tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.