The pregnancy-associated glycoproteins (PAG) constitute a large family of recently duplicated genes. They show structural resemblance to pepsin and related aspartic proteinases. A total of 21 bovine (bo) PAG and 9 ovine (ov) PAG cDNA have been identified. Phylogenetic analysis indicated that the PAG are divided into two main groupings that accurately reflect their tissue expression, as determined by in situ hybridization. In the first pattern, represented by ovPAG-2 and boPAG-2, -8, -10, and -11 (where the numbering is arbitrary and reflects order of discovery within species), expression occurred throughout the outer epithelial layer of the placenta (trophectoderm). The second pattern was predominant localization to binucleate cells. Ribonuclease protection assays, which allow discrimination between closely related transcripts, have shown that the expression of PAG varies in a temporal manner over pregnancy. Of those bovine PAG expressed predominantly in binucleate cells, boPAG-1, -6, and -7 are expressed weakly, if at all, by Day 25 placenta, but are present at the middle and end of pregnancy. Others, such as boPAG-4, -5, and -9, are expressed at Day 25 and at earlier stages. Although not among the earliest PAG produced by the trophoblast, boPAG-1 has been used for pregnancy diagnosis, particularly in dairy cows, where there is a major need for a sensitive method capable of detecting pregnancy within 1 mo of conception. It seems likely that some of the newly discovered PAG will be better candidates than PAG-1 for pregnancy diagnosis.
Differential mRNA expression patterns were evaluated between germinal vesicle oocytes (pgvo), four-cell (p4civv), blastocyst (pblivv), and in vitro-produced four-cell (p4civp) and in vitro-produced blastocyst (pblivp) stage embryos to determine key transcripts responsible for early embryonic development in the pig. Five comparisons were made: pgvo to p4civv, p4civv to pblivv, pgvo to pblivv, p4civv to p4civp, and pblivv to pblivp. ANOVA (P < 0.05) was performed with the Benjamini and Hochberg false-discovery-rate multiple correction test on each comparison. A comparison of pgvo to p4civv, p4civv to pblivv, and pgvo to pblivv resulted in 3214, 1989, and 4528 differentially detected cDNAs, respectively. Real-time PCR analysis on seven transcripts showed an identical pattern of changes in expression as observed on the microarrays, while one transcript deviated at a single cell stage. There were 1409 and 1696 differentially detected cDNAs between the in vitro- and in vivo-produced embryos at the four-cell and blastocyst stages, respectively, without the Benjamini and Hochberg false-discovery-rate multiple correction test. Real-time polymerase chain reaction (PCR) analysis on four genes at the four-cell stage showed an identical pattern of gene expression as found on the microarrays. Real-time PCR analysis on four of five genes at the blastocyst stage showed an identical pattern of gene expression as found on the microarrays. Thus, only 1 of the 39 comparisons of the pattern of gene expression exhibited a major deviation between the microarray and the real-time PCR. These results illustrate the complex mechanisms involved in pig early embryonic development.
To determine the accuracy of a pregnancy-associated glycoprotein (PAG) ELISA in identifying pregnancy status 27 d after timed artificial insemination (TAI), blood samples were collected from lactating Holstein cows (n = 1,079) 27 d after their first, second, and third postpartum TAI services. Pregnancy diagnosis by transrectal ultrasonography (TU) was performed immediately after blood sample collection, and pregnancy outcomes by TU served as a standard to test the accuracy of the PAG ELISA. Pregnancy outcomes based on the PAG ELISA and TU that agreed were considered correct, whereas the pregnancy status of cows in which pregnancy outcomes between PAG and TU disagreed were reassessed by TU 5 d later. The accuracy of pregnancy diagnosis was less than expected when using TU 27 d after TAI (93.7 to 97.8%), especially when pregnancy outcomes were based on visualization of chorioallantoic fluid and a corpus luteum but when an embryo was not visualized. The accuracy of PAG ELISA outcomes 27 d after TAI was 93.7, 95.4, and 96.2% for first, second, and third postpartum TAI services, respectively. Statistical agreement (kappa) between TU and the PAG ELISA 27 d after TAI was 0.87 to 0.90. Pregnancy outcomes based on the PAG ELISA had a high negative predictive value, indicating that the probability of incorrectly administering PGF(2alpha) to pregnant cows would be low if this test were implemented on a commercial dairy.
Autoantibody production and immune complex deposition within the kidney promote renal disease in patients with lupus nephritis. Thus, therapeutics that inhibit these pathways may be efficacious in the treatment of systemic lupus erythematosus. Bruton’s tyrosine kinase (BTK) is a critical signaling component of both BCR and FcR signaling. We sought to assess the efficacy of inhibiting BTK in the development of lupus-like disease, and in this article describe (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxy]phenyl)-1H-pyrazole-4-carboxamide (PF-06250112), a novel highly selective and potent BTK inhibitor. We demonstrate in vitro that PF-06250112 inhibits both BCR-mediated signaling and proliferation, as well as FcR-mediated activation. To assess the therapeutic impact of BTK inhibition, we treated aged NZBxW_F1 mice with PF-06250112 and demonstrate that PF-06250112 significantly limits the spontaneous accumulation of splenic germinal center B cells and plasma cells. Correspondingly, anti-dsDNA and autoantibody levels were reduced in a dose-dependent manner. Moreover, administration of PF-06250112 prevented the development of proteinuria and improved glomerular pathology scores in all treatment groups. Strikingly, this therapeutic effect could occur with only a modest reduction observed in anti-dsDNA titers, implying a critical role for BTK signaling in disease pathogenesis beyond inhibition of autoantibody production. We subsequently demonstrate that PF-06250112 prevents proteinuria in an FcR-dependent, Ab-mediated model of glomerulonephritis. Importantly, these results highlight that BTK inhibition potently limits the development of glomerulonephritis by impacting both cell- and effector molecule-mediated pathways. These data provide support for evaluating the efficacy of BTK inhibition in systemic lupus erythematosus patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.