The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Skin, an exterior interface of the human body is home to commensal microbiota and also acts a physical barrier that protects from invasion of foreign pathogenic microorganisms. In recent years, interest has significantly expanded beyond the gut microbiome to include the skin microbiome and its influence in managing several skin disorders. Probiotics play a major role in maintaining human health and disease prevention. Topical probiotics have demonstrated beneficial effects for the treatment of certain inflammatory skin diseases such as acne, rosacea, psoriasis etc., and also found to have a promising role in wound healing. In this review, we discuss recent insights into applications of topical probiotics and their influence on health and diseases of the skin. Patents, commercially available topical probiotics, and novel probiotic impregnated fabrics have been emphasized. A thorough understanding of the relationship between probiotics and the skin microbiome is important for designing novel therapeutic approaches in using topical probiotics.
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
For the development of renal diseases, oxidative stress (OS) is reasoned to be one of the risk factors. For the treatment or prevention of the renal disease, the use of antioxidants could be a hopeful therapeutic mediation as they retard or block the oxidative reaction along with the inflammatory process. Luteolin (Lut) is a plant flavonoid, a pharmacologically active component normally found in glycosylated forms in basic perilla leaf, green pepper, celery, seed, honeysuckle bloom, and chamomile blossom; it exhibits antioxidant activity. In this investigation, we explored the nephroprotective activity of Lut on bisphenol A (BPA)‐induced nephron toxicity in rats. Orally administering Lut (100 and 200 mg/kg) diminished BPA‐induced anomalies in the kidney, blood urea nitrogen, creatinine, and serum uric acid levels. Lut therapy reduced the BPA‐influenced generation of inflammatory mediators, inclusive of tumor necrosis factor alpha, interleukin 6, and interleukin 1 beta. This was coupled with significant improvement in kidney histopathologic features. Lut enhanced the nuclear factor‐like 2 (Nrf2) and heme oxygenase 1 (HO‐1) expression, which showed protection against OS induced by BPA. The current outcomes of the study showed that Lut has a strong reactive oxygen species scavenging property and potentially decreases the lipid peroxidation as well as inhibits DNA damage in renal toxicity induced by BPA. In conclusion, the potential antioxidant effect of Lut may be because of its modulatory effect on the Nrf2/antioxidant response element (ARE)/HO‐1 pathway, which means it protects the kidney from BPA‐induced oxidative injury. © 2019 IUBMB Life, 2019
Solid lipid nanoparticles (SLNs) are being extensively exploited as topical ocular carrier systems to enhance the bioavailability of drugs. This study investigated the prospects of drug-loaded SLNs to increase the ocular permeation and improve the therapeutic potential of clarithromycin in topical ocular therapy. SLNs were formulated by high-speed stirring and the ultra-sonication method. Solubility studies were carried out to select stearic acid as lipid former, Tween 80 as surfactant, and Transcutol P as cosurfactant. Clarithromycin-loaded SLN were optimized by fractional factorial screening and 32 full factorial designs. Optimized SLNs (CL10) were evaluated for stability, morphology, permeation, irritation, and ocular pharmacokinetics in rabbits. Fractional factorial screening design signifies that the sonication time and amount of lipid affect the SLN formulation. A 32 full factorial design established that both factors had significant influences on particle size, percent entrapment efficiency, and percent drug loading of SLNs. The release profile of SLNs (CL9) showed ~80% drug release in 8 h and followed Weibull model kinetics. Optimized SLNs (CL10) showed significantly higher permeation (30.45 μg/cm2/h; p < 0.0001) as compared to control (solution). CL10 showed spherical shape and good stability and was found non-irritant for ocular administration. Pharmacokinetics data demonstrated significant improvement of clarithromycin bioavailability (p < 0.0001) from CL10, as evidenced by a 150% increase in Cmax (~1066 ng/mL) and a 2.8-fold improvement in AUC (5736 ng h/mL) (p < 0.0001) as compared to control solution (Cmax; 655 ng/mL and AUC; 2067 ng h/mL). In summary, the data observed here demonstrate the potential of developed SLNs to improve the ocular permeation and enhance the therapeutic potential of clarithromycin, and hence could be a viable drug delivery approach to treat endophthalmitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.