Background Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. Methodology A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. Results Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS. Increased pain tolerance (80%), hypotonia (85%), and sparse eyebrows (80%) were prominent clinical features. An atypical case diagnosed with PMS at 18 years old and IQ within the normal range is here described. Among Brazilian ASD or ID individuals referred to CNV analyses, the frequency of 22q13.3 deletion was 0.6% (5/829) and 0.61% (15/2297), respectively. Finally, renal abnormalities, lymphedema, and language impairment were found to be positively associated with deletion sizes, and the minimum deletion to cause these abnormalities is here suggested. Conclusions This is the first work describing a cohort of Brazilian individuals with PMS. Our results confirm the impact of 22q13 deletions on ASD and several comorbidities, such as hypotonia. The estimation of a minimal deletion size for developing lymphedema and renal problem can assist prediction of prognosis in PMS individuals, particularly those diagnosed in early infancy. We also identified one atypical individual carrying SHANK3 deletion, suggesting that resilience to such mutations occurs. This case expands the clinical spectrum of variability in PMS and opens perspectives to identify protective mechanisms that can minimize the severity of this condition. Electronic supplementary material The online version of this article (10.1186/s11689-019-9273-1) contains supplementary material, which is available to authorized users.
This paper deals with the molecular investigation of Waardenburg syndrome (WS) in a sample of 49 clinically diagnosed probands (most from southeastern Brazil), 24 of them having the type 1 (WS1) variant (10 familial and 14 isolated cases) and 25 being affected by the type 2 (WS2) variant (five familial and 20 isolated cases). Sequential Sanger sequencing of all coding exons of PAX3, MITF, EDN3, EDNRB, SOX10 and SNAI2 genes, followed by CNV detection by MLPA of PAX3, MITF and SOX10 genes in selected cases revealed many novel pathogenic variants. Molecular screening, performed in all patients, revealed 19 causative variants (19/49 = 38.8%), six of them being large whole-exon deletions detected by MLPA, seven (four missense and three nonsense substitutions) resulting from single nucleotide substitutions (SNV), and six representing small indels. A pair of dizygotic affected female twins presented the c.430delC variant in SOX10, but the mutation, imputed to gonadal mosaicism, was not found in their unaffected parents. At least 10 novel causative mutations, described in this paper, were found in this Brazilian sample. Copy-number-variation detected by MLPA identified the causative mutation in 12.2% of our cases, corresponding to 31.6% of all causative mutations. In the majority of cases, the deletions were sporadic, since they were not present in the parents of isolated cases. Our results, as a whole, reinforce the fact that the screening of copy-number-variants by MLPA is a powerful tool to identify the molecular cause in WS patients.
Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.
Large genomic databases of neurodevelopmental disorders (NDD) are helpful resources of genomic variations in complex and heterogeneous conditions, as Autism Spectrum Disorder (ASD). We evaluated the role of rare copy number variations (CNVs) and exonic de novo variants, in a molecularly unexplored Brazilian cohort of 30 ASD trios (n = 90), by performing a meta‐analysis of our findings in more than 20,000 patients from NDD cohorts. We identified three pathogenic CNVs: two duplications on 1q21 and 17p13, and one deletion on 4q35. CNVs meta‐analysis (n = 8,688 cases and n = 3,591 controls) confirmed 1q21 relevance by identifying duplications in other 16 ASD patients. Exome analysis led the identification of seven de novo variants in ASD genes (SFARI list): three loss‐of‐function pathogenic variants in CUL3, CACNA1H, and SHANK3; one missense pathogenic variant in KCNB1; and three deleterious missense variants in ATP10A, ANKS1B, and DOCK1. From the remaining 12 de novo variants in non‐previous ASD genes, we prioritized PRPF8 and RBM14. Meta‐analysis (n = 13,754 probands; n = 2,299 controls) identified six and two additional patients with validated de novo variants in PRPF8 and RBM14, respectively. By comparing the de novo variants with a previously established mutational rate model, PRPF8 showed nominal significance before multiple test correction (P = 0.039, P‐value adjusted = 0.079, binomial test), suggesting its relevance to ASD. Approximately 60% of our patients presented comorbidities, and the diagnostic yield was estimated in 23% (7/30: three pathogenic CNVs and four pathogenic de novo variants). Our uncharacterized Brazilian cohort with tetra‐hybrid ethnic composition was a valuable resource to validate and identify possible novel candidate loci. Autism Res 2020, 13: 199–206. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. Lay Summary We believed that to study an unexplored autistic population, such as the Brazilian, could help to find novel genes for autism. In order to test this idea, with our limited budget, we compared candidate genes obtained from genomic analyses of 30 children and their parents, with those of more than 20,000 individuals from international studies. Happily, we identified a genetic cause in 23% of our patients and suggest a possible novel candidate gene for autism (PRPF8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.