Here we report on the characterization of rice osa-miR827 and its two target genes, OsSPX-MFS1 and OsSPX-MFS2, which encode SPX-MFS proteins predicted to be implicated in phosphate (Pi) sensing or transport. We first show by Northern blot analysis that osa-miR827 is strongly induced by Pi starvation in both shoots and roots. Hybridization of osa-miR827 in situ confirms its strong induction by Pi starvation, with signals concentrated in mesophyll, epidermis and ground tissues of roots. In parallel, we analyzed the responses of the two OsSPX-MFS1 and OsSPX-MFS2 gene targets to Pi starvation. OsSPX-MFS1 mRNA is mainly expressed in shoots under sufficient Pi supply while its expression is reduced on Pi starvation, revealing a direct relationship between induction of osa-miR827 and down-regulation of OsSPX-MFS1. In contrast, OsSPX-MFS2 responds in a diametrically opposed manner to Pi starvation. The accumulation of OsSPX-MFS2 mRNA is dramatically enhanced under Pi starvation, suggesting the involvement of complex regulation of osa-miR827 and its two target genes. We further produced transgenic rice lines overexpressing osa-miR827 and T-DNA knockout mutant lines in which the expression of osa-miR827 is abolished. Compared with wild-type controls, both target mRNAs exhibit similar changes, their expression being reduced and increased in overexpressing and knockout lines, respectively. This suggests that OsSPX-MFS1 and OsSPX-MFS2 are both negatively regulated by osa-miR827 abundance although they respond differently to external Pi conditions. We propose that this is a complex mechanism comprising fine tuning of spatial or temporal regulation of both targets by osa-miR827.
Many autoimmune disorders such as psoriasis lead to the alteration of skin components which generally manifests as unwanted topical symptoms. One of the most widely approved psoriasis-like animal models is the imiquimod (IMQ)-induced mouse model. This representation mimics various aspects of the complex cutaneous pathology and could be appropriate for testing topical treatment options. We perform a thorough characterization of this model by assessing some parameters that are not fully described in the literature, namely a precise description of skin disruption. It was evaluated by transepidermal water loss measurements and analyses of epidermis swelling as a consequence of keratinocyte hyperproliferation. The extent of neo-angiogenesis and hypervascularity in dermis were highlighted by immunostaining. Moreover, we investigated systemic inflammation through cytokines levels, spleen swelling and germinal centers appearance in draining lymph nodes. The severity of all parameters was correlated to IMQ concentration in skin samples. This study outlines new parameters of interest useful to assess this model. We highlight the skin barrier disruption and report a systemic inflammatory reaction occurring at distance both in spleen and lymph nodes. These newly identified biological endpoints could be exploited to investigate the efficacy of therapeutic candidates for psoriasis and more extensively for several other skin inflammatory diseases.
Cancer is a systemic disease involving multiple components produced from both tumor cells themselves and surrounding stromal cells. The pro- or anti-tumoral role of the stroma is still under debate. Indeed, it has long been considered the main physical barrier to the diffusion of chemotherapy by its dense and fibrous nature and its poor vascularization. However, in murine models, the depletion of fibroblasts, the main ExtraCellular Matrix (ECM)-producing cells, led to more aggressive tumors even though they were more susceptible to anti-angiogenic and immuno-modulators. Tenascin-C (TNC) is a multifunctional matricellular glycoprotein ( i.e. an ECM protein also able to induce signaling pathway) and is considered as a marker of tumor expansion and metastasis. However, the status of other tenascin (TN) family members and particularly Tenascin-X (TNX) has been far less studied during this pathological process and is still controversial. Herein, through (1) in silico analyses of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and (2) immunohistochemistry staining of Tissue MicroArrays (TMA), we performed a large and extensive study of TNX expression at both mRNA and protein levels (1) in the 6 cancers with the highest incidence and mortality in the world ( i.e. lung, breast, colorectal, prostate, stomach and liver) and (2) in the cancers for which sparse data regarding TNX expression already exist in the literature. We thus demonstrated that, in most cancers, TNX expression is significantly downregulated during cancer progression and we also highlighted, when data were available, that high TNXB mRNA expression in cancer is correlated with a good survival prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.