Physiologically based pharmacokinetic (PBPK) modeling and simulation is a tool that can help predict the pharmacokinetics of drugs in humans and evaluate the effects of intrinsic (e.g., organ dysfunction, age, genetics) and extrinsic (e.g., drug-drug interactions) factors, alone or in combinations, on drug exposure. The use of this tool is increasing at all stages of the drug development process. This report reviews recent instances of the use of PBPK in decision-making during regulatory review. The examples are based on Center for Drug Evaluation and Research reviews of several submissions for investigational new drugs (INDs) and new drug applications (NDAs) received between July 2008 and June 2010. The use of PBPK modeling and simulation facilitated the following types of decisions: the need to conduct specific clinical pharmacology studies, specific study designs, and appropriate labeling language. The report also discusses the challenges encountered when PBPK modeling and simulation were used in these cases and recommends approaches to facilitating full utilization of this tool.
The value of quantitative thinking in drug development and regulatory review is increasingly being appreciated. Modeling and simulation of data pertaining to pharmacokinetic, pharmacodynamic, and disease progression is often referred to as the pharmacometrics analyses. The objective of the current report is to assess the role of pharmacometrics at the US Food and Drug Administration (FDA) in making drug approval and labeling decisions. The New Drug Applications (NDAs) submitted between 2000 and 2004 to the Cardio-renal, Oncology, and Neuropharmacology drug products divisions were surveyed. For those NDA reviews that included a pharmacometrics consultation, the clinical pharmacology scientists ranked the impact on the regulatory decision(s). Of about a total of 244 NDAs, 42 included a pharmacometrics component. Review of NDAs involved independent, quantitative evaluation by FDA pharmacometricians, even when such analysis was not conducted by the sponsor. Pharmacometric analyses were pivotal in regulatory decision making in more than half of the 42 NDAs. Of the 14 reviews that were pivotal to approval related decisions, 5 identified the need for additional trials, whereas 6 reduced the burden of conducting additional trials. Collaboration among the FDA clinical pharmacology, medical, and statistical reviewers and effective communication with the sponsors was critical for the impact to occur. The survey and the case studies emphasize the need for early interaction between the FDA and sponsors to plan the development more efficiently by appreciating the regulatory expectations better.
The aim of the study was to evaluate the quantitative relationship between duration of severe neutropenia (DSN, the efficacy endpoint) and area under effect curve of absolute neutrophil counts (ANC-AUEC, the pharmacodynamic endpoint), based on data from filgrastim products, a human granulocyte colony-stimulating factor (G-CSF). Clinical data from filgrastim product comparator and test arms of two randomized, parallel-group, phase III studies in breast cancer patients treated with myelosuppressive chemotherapy were utilized. A zero-inflated Poisson regression model best described the negative correlation between DSN and ANC-AUEC. The models predicted that with 10 × 10 day/L of increase in ANC-AUEC, the mean DSN would decrease from 1.1 days to 0.93 day in Trial 1 and from 1.2 days to 1.0 day in Trial 2. The findings of the analysis provide useful information regarding the relationship between ANC and DSN that can be used for dose selection and optimization of clinical trial design for G-CSF.
On June 29, 2020, the FDA approved pertuzumab, trastuzumab, and hyaluronidase-zzxf subcutaneous injection (Phesgo) for the treatment of patients with HER2-positive early-stage and metastatic breast cancer. Patients should be selected for therapy based on an FDA-approved companion diagnostic test. Approval was primarily based on the FeDeriCa trial, a randomized, open-label, multicenter comparability study of pertuzumab, trastuzumab, and hyaluronidase-zzxf subcutaneous injection compared with intravenous pertuzumab and intravenous trastuzumab administered in the neoadjuvant and adjuvant settings with chemotherapy for the treatment of patients with early breast cancer. The pharmacokinetic endpoints were, first, to demonstrate that the exposure of subcutaneous pertuzumab was not inferior to that of intravenous pertuzumab, and then to demonstrate that the exposure of subcutaneous trastuzumab was not inferior to that of intravenous trastuzumab. The primary endpoints were met with the observed lower limit of the two-sided 90% confidence intervals above the prespecified noninferiority margins. The most common adverse reactions were alopecia, nausea, diarrhea, anemia, and asthenia. The totality of the evidence demonstrated comparability of the subcutaneous product to intravenous, allowing for extrapolation and approval of all breast cancer indications for which intravenous trastuzumab and pertuzumab are approved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.