Loss of green color in leaves results from chlorophyll (Chl) degradation in chloroplasts, but little is known about how Chl catabolism is regulated throughout leaf development. Using the staygreen (sgr) mutant in rice (Oryza sativa), which maintains greenness during leaf senescence, we identified Sgr, a senescence-associated gene encoding a novel chloroplast protein. Transgenic rice overexpressing Sgr produces yellowish-brown leaves, and Arabidopsis thaliana pheophorbide a oxygenase-impaired mutants exhibiting a stay-green phenotype during dark-induced senescence have reduced expression of Sgr homologs, indicating that Sgr regulates Chl degradation at the transcriptional level. We show that the leaf staygreenness of the sgr mutant is associated with a failure in the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of Chls and LHCPs during senescence. Transient overexpression of Sgr in Nicotiana benthamiana and an in vivo pull-down assay show that Sgr interacts with LHCPII, indicating that the Sgr-LHCPII complexes are formed in the thylakoid membranes. Thus, we propose that in senescing leaves, Sgr regulates Chl degradation by inducing LHCPII disassembly through direct interaction, leading to the degradation of Chls and Chl-free LHCPII by catabolic enzymes and proteases, respectively.
SUMMARY Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate developmental responses, such as flowering time. Blue light-sensing cryptochromes, the E3 ubiquitin-ligase COP1, and clock-associated proteins ELF3 and GI, regulate this process, although the regulatory link between them is unclear. Here, we present data showing that COP1 acts with ELF3 to mediate day length signaling from CRY2 to GI within the photoperiod flowering pathway. We found that COP1 and ELF3 interact in vivo and show that ELF3 allows COP1 to interact with GI in vivo, leading to GI degradation in planta. Accordingly, mutation of COP1 or ELF3 disturbs the pattern of GI cyclic accumulation. We propose a model in which ELF3 acts as a substrate adaptor, enabling COP1 to modulate light input signal to the circadian clock through targeted destabilization of GI.
Plants initiate senescence to shed photosynthetically inefficient leaves. Light deprivation induces leaf senescence, which involves massive transcriptional reprogramming to dismantle cellular components and remobilize nutrients. In darkness, intermittent pulses of red light can inhibit senescence, likely via phytochromes. However, the precise molecular mechanisms transducing the signals from light perception to the inhibition of senescence remain elusive. Here, we show that in Arabidopsis, dark-induced senescence requires phytochrome-interacting transcription factors PIF4 and PIF5 (PIF4/PIF5). ELF3 and phytochrome B inhibit senescence by repressing PIF4/PIF5 at the transcriptional and post-translational levels, respectively. PIF4/PIF5 act in the signalling pathways of two senescence-promoting hormones, ethylene and abscisic acid, by directly activating expression of EIN3, ABI5 and EEL. In turn, PIF4, PIF5, EIN3, ABI5 and EEL directly activate the expression of the major senescence-promoting NAC transcription factor ORESARA1, thus forming multiple, coherent feed-forward loops. Our results reveal how classical light signalling connects to senescence in Arabidopsis.
These authors made equal contributions to this study. SummaryThe¯oral transition in Arabidopsis is regulated by at least four¯owering pathways: the long-day, autonomous, vernalization, and gibberellin (GA)-dependent pathways. Previously, we reported that the MADSbox transcription factor SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) integrates the long-day and vernalization/autonomous pathways. Here, we present evidences that SOC1 also integrates signaling from the GA-dependent pathway, a major¯owering pathway under non-inductive short days. Under short days, the¯owering time of GA-biosynthetic and -signaling mutants was well correlated with the level of SOC1 expression; overexpression of SOC1 rescued the non-¯owering phenotype of ga1-3, and the soc1 null mutant showed reduced sensitivity to GA for¯owering. In addition, we show that vernalization-induced repression of FLOWERING LOCUS C (FLC ), an upstream negative regulator of SOC1, is not suf®cient to activate SOC1; positive factors are also required. Under short days, the GA pathway provides a positive factor for SOC1 activation. In contrast to SOC1, the GA pathway does not regulate expression of other owering integrators FLC and FT. Our results explain why the GA pathway has a strong effect on¯owering under short days and how vernalization and GA interact at the molecular level.
Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using whole-genome re-sequencing, we found that Oryza sativa Pseudo-Response Regulator37 (OsPRR37; hereafter PRR37) is responsible for the Early heading7-2 (EH7-2)/Heading date2 (Hd2) QTL which was identified from a cross of late-heading rice 'Milyang23 (M23)' and early-heading rice 'H143'. H143 contains a missense mutation of an invariantly conserved amino acid in the CCT (CONSTANS, CO-like, and TOC1) domain of PRR37 protein. In the world rice collection, different types of nonfunctional PRR37 alleles were found in many European and Asian rice cultivars. Notably, the japonica varieties harboring nonfunctional alleles of both Ghd7/Hd4 and PRR37/Hd2 flower extremely early under natural long-day conditions, and are adapted to the northernmost regions of rice cultivation, up to 53° N latitude. Genetic analysis revealed that the effects of PRR37 and Ghd7 alleles on heading date are additive, and PRR37 down-regulates Hd3a expression to suppress flowering under long-day conditions. Our results demonstrate that natural variations in PRR37/Hd2 and Ghd7/Hd4 have contributed to the expansion of rice cultivation to temperate and cooler regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.