A simple method has been developed to modify the anode interface of inverted bulk-heterojunction (BHJ) polymer solar cells by spin-coating a thin layer of graphene oxide (GO) on top of the organic active layer. The device with GO exhibited a remarkable improvement in power conversion efficiency compared to devices without any interfacial layer, indicating that GO can effectively modify the BHJ/metal anode interface to facilitate efficient hole collection. The dependence of the device performance on the GO layer thickness was also investigated showing an optimum performance from a GO thickness of ∼2–3 nm.
α-Pinene is a major monoterpene of the pine tree essential oils. It has been reported that α-pinene shows anxiolytic and hypnotic effects upon inhaled administration. However, hypnotic effect by oral supplementation and the molecular mechanism of α-pinene have not been determined yet. By combining in vivo sleep behavior, ex vivo electrophysiological recording from brain slices, and in silico molecular modeling, we demonstrate that (-)-α-pinene shows sleep enhancing property through a direct binding to GABA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site. The effect of (-)-α-pinene on sleep-wake profiles was evaluated by recording electroencephalogram and electromyogram. The molecular mechanism of (-)-α-pinene was investigated by electrophysiology and molecular docking study. (-)-α-pinene significantly increased the duration of non-rapid eye movement sleep (NREMS) and reduced the sleep latency by oral administration without affecting duration of rapid eye movement sleep and delta activity. (-)-α-pinene potentiated the GABA receptor-mediated synaptic response by increasing the decay time constant of sIPSCs in hippocampal CA1 pyramidal neurons. These effects of (-)-α-pinene on sleep and inhibitory synaptic response were mimicked by zolpidem, acting as a modulator for GABA-BZD receptors, and fully antagonized by flumazenil, an antagonist for GABA-BZD receptor. (-)-α-pinene was found to bind to aromatic residues of α1- and -γ2 subunits of GABA-BZD receptors in the molecular model. We conclude that (-)-α-pinene enhances the quantity of NREMS without affecting the intensity of NREMS by prolonging GABAergic synaptic transmission, acting as a partial modulator of GABA-BZD receptors and directly binding to the BZD binding site of GABA receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.