Recently, the demand on the 3-D integration using through-silicon vias (TSVs) and micro-bumps has been increasing for better electrical performance and smaller form factor. However, lots of doubtful concerns on the reliability of 3-D stacked chips still exist, which are Cu TSV expansion, transistor degradation or open failures on Cu contamination, micro-bump stress, and so on. In this study, we investigated thermal reliabilities of the micro-bump solder joints in terms of the growth behavior of intermetallic compounds (IMCs) and high temperature reliability for various bump structures. IMC growth behavior has been studied as a number of reflow times and as a function of aging temperature. Furthermore, we performed high temperature storage (HTS) and thermal cycling (TC) tests. As a result, we found out the most reliable bump structure which guarantees the 2000 cycles for TC and 2016 hours for HTS test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.