Among the direct searches for WIMP-type dark matter, the DAMA experiment is unique in that it has consistently reported a positive signal for an annual-modulation signal with a large (9.3σ) statistical significance. This result is controversial because if it is interpreted as a signature for WIMP interactions, it conflicts with other direct search experiments that report null signals in the regions of parameter space that are allowed by the DAMA observation. This necessitates an independent verification of the origin of the observed modulation signal using the same technique as that employed by the DAMA experiment, namely low-background NaI(Tl) crystal detectors. Here, we report first results of a program of NaI(Tl) crystal measurements at the Yangyang Underground Laboratory aimed at producing NaI(Tl) crystal detectors with lower background levels and higher light yields than those used for the DAMA measurements.
Rapid diagnosis and case isolation are pivotal to controlling the current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, a label-free DNA capacitive biosensor for the detection of SARS-CoV-2 that demonstrates real-time, low-cost, and high-throughput screening of nucleic acid samples is presented. Our novel biosensor composed of the interdigitated platinum/titanium electrodes on the glass substrate can detect the hybridization of analyte DNA with probe DNA. The hybridization signals of specific DNA sequences were verified through exhaustive physicochemical analytical techniques such as Fourier transform infrared (FT-IR) spectrometry, contact-angle analysis, and capacitance-frequency measurements. For a single-step hybridized reaction, the fabricated kit exhibited significant sensitivity (capacitance change, ΔC = ∼2 nF) in detecting the conserved region of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene with high sensitivity of 0.843 nF/nM. In addition to capacitive measurements, this selective detection was confirmed by the fluorescence image and intensity from a SARS-CoV-2 gene labeled with a fluorescent dye. We also demonstrated that the kits are recyclable by surface ozone treatment using UV irradiation. Thus, these kits could potentially be applied to various types of label-free DNA, thereby acting as rapid, cost-effective biosensors for several diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.