Controlling the electromagnetic properties of materials, going beyond the limit that is attainable with naturally existing substances, has become a reality with the advent of metamaterials. The range of various structured artificial 'atoms' has promised a vast variety of otherwise unexpected physical phenomena, among which the experimental realization of a negative refractive index has been one of the main foci thus far. Expanding the refractive index into a high positive regime will complete the spectrum of achievable refractive index and provide more design flexibility for transformation optics. Naturally existing transparent materials possess small positive indices of refraction, except for a few semiconductors and insulators, such as lead sulphide or strontium titanate, that exhibit a rather high peak refractive index at mid- and far-infrared frequencies. Previous approaches using metamaterials were not successful in realizing broadband high refractive indices. A broadband high-refractive-index metamaterial structure was theoretically investigated only recently, but the proposed structure does not lend itself to easy implementation. Here we demonstrate that a broadband, extremely high index of refraction can be realized from large-area, free-standing, flexible terahertz metamaterials composed of strongly coupled unit cells. By drastically increasing the effective permittivity through strong capacitive coupling and decreasing the diamagnetic response with a thin metallic structure in the unit cell, a peak refractive index of 38.6 along with a low-frequency quasi-static value of over 20 were experimentally realized for a single-layer terahertz metamaterial, while maintaining low losses. As a natural extension of these single-layer metamaterials, we fabricated quasi-three-dimensional high-refractive-index metamaterials, and obtained a maximum bulk refractive index of 33.2 along with a value of around 8 at the quasi-static limit.
Squeezing light through nanometre-wide gaps in metals can lead to extreme field enhancements, nonlocal electromagnetic effects and light-induced electron tunnelling. This intriguing regime, however, has not been readily accessible to experimentalists because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and high throughput. Here we introduce a new patterning technology based on atomic layer deposition and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque metal films along the entire contour of a millimetre-sized pattern, with gap widths as narrow as 9.9 Å, and pack 150,000 such devices on a 4-inch wafer. Electromagnetic waves pass exclusively through the nanogaps, enabling backgroundfree transmission measurements. We observe resonant transmission of near-infrared waves through 1.1-nm-wide gaps (l/1,295) and measure an effective refractive index of 17.8. We also observe resonant transmission of millimetre waves through 1.1-nm-wide gaps (l/4,000,000) and infer an unprecedented field enhancement factor of 25,000.
Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties.
Unusual performances of metamaterials such as negative index of refraction, memory effect, and cloaking originate from the resonance features of the metallic composite atom [1][2][3][4][5][6] . Indeed, control of metamaterial properties by changing dielectric environments of thin films below the metallic resonators has been demonstrated [7][8][9][10][11] . However, the dynamic control ranges are still limited to less than a factor of 10, 7-11 with the applicable bandwidth defined by the sharp resonance features. Here, we present ultra-broad-band metamaterial thin film with colossal dynamic control range, fulfilling present day research demands. Hybridized with thin VO 2 (vanadium dioxide) 12-18 films, nanoresonator supercell arrays designed for one decade of spectral width in terahertz frequency region show an unprecedented extinction ratio of over 10000 when the underlying thin film experiences a phase transition. Our nanoresonator approach realizes the full potential of the thin film technology for long wavelength applications.
Molecules have extremely small absorption cross sections in the terahertz range even under resonant conditions, which severely limit their detectability, often requiring tens of milligrams. We demonstrate that nanoantennas tailored for the terahertz range resolves the small molecular cross section problem. The extremely asymmetric electromagnetic environment inside the slot antenna, which finds the electric field being enhanced by thousand times with the magnetic field changed little, forces the molecular cross section to be enhanced by >10(3) accompanied by a colossal absorption coefficient of ~170,000 cm(-1). Tens of nanograms of small molecules such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and lactose drop-cast over an area of 10 mm(2), with only tens of femtograms of molecules inside the single nanoslot, can readily be detected. Our work enables terahertz sensing of chemical and biological molecules in ultrasmall quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.