Chemical enhancement is an important mechanism in surface-enhanced Raman spectroscopy. It is found that mildly reduced graphene oxide (MR-GO) nanosheets can significantly increase the chemical enhancement of the main peaks by up to 1 order of magnitude for adsorbed Rhodamine B (RhB) molecules, in comparison with the mechanically exfoliated graphene. The observed enhancement factors can be as large as ∼10(3) and show clear dependence on the reduction time of graphene oxide, indicating that the chemical enhancement can be steadily controlled by specific chemical groups. With the help of X-ray photoelectron spectra, these chemical species are identified and the origin of the observed large chemical enhancement can thus be revealed. It is shown that the highly electronegative oxygen species, which can introduce a strong local electric field on the adsorbed molecules, are responsible for the large enhancement. In contrast, the local defects generated by the chemical reduction show no positive correlation with the enhancement. Most importantly, the dramatically enhanced Raman spectra of RhB molecules on MR-GO nanosheets reproduce all important spectral fingerprints of the molecule with a negligible frequency shift. Such a unique noninvasive feature, along with the other intrinsic advantages, such as low cost, light weight, easy availability, and flexibility, makes the MR-GO nanosheets very attractive to a variety of practical applications.
A linker-free connected reduced graphene oxide/CdSe nanoparticle (R-GO/CdSe NP) nanocomposite was produced by directly anchoring CdSe NPs onto R-GO. The morphological and structural characterizations evidence that the single-crystal CdSe NPs with the size of a few tens of nanometers can be efficiently decorated on the R-GO. The photoresponse of this nanocomposite is drastically enhanced compared with that of the pure CdSe NPs, the bare R-GO, and the physically mixed R-GO/CdSe NPs, while the photoluminescence of the CdSe NPs in the composite is much quenched, indicating that the photoinduced carriers generated from the CdSe NPs can be transferred to the R-GO effectively and separately. This ability makes the R-GO/CdSe NP nanocomposite a great promise for wide potential applications in optoelectronics.
A functional hybrid of reduced graphene oxide (RGO)-Fe 3 O 4 nanoparticles (NPs) has been chemically synthesized with exceptionally high yield and tunable RGO/Fe 3 O 4 ratio. The adsorption behaviors of a series of dyes using this hybrid as the adsorbent are systematically investigated in aqueous solutions through real-time monitoring of the fingerprint spectral changes of the dyes. The results show that, benefiting both from the surface property of RGO and from the magnetic property of Fe 3 O 4 , the hybrid possesses quite a good (although unoptimized) and versatile adsorption capacity to the dyes under investigation, and can be easily and rapidly extracted from water by magnetic attraction. Most importantly, it is found that by simply annealing in moderate conditions, this hybrid adsorbent can be easily and efficiently regenerated for reuse with hardly any compromise of the adsorption capacity. Furthermore, the adsorbability of this hybrid shows satisfactory tolerance against the variations in both pH environment and dye concentration. Even when exposed to a multi dye cocktail, the hybrid can work well without suppressing the adsorption capacity for each of the dyes, as compared with that measured separately. The inherent advantages of this nanostructured adsorbent, such as noncompromised adsorption capacity, low cost, easy, rapid extraction and regeneration, good tolerance, multiplex adsorbability, and handy operation, may pave a new, efficient and sustainable way towards highly-efficient dye pollutant removal in Earth's water environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.