In the last 5 years, regulatory agencies and drug monitoring centres have been developing computerised data-mining methods to better identify reporting relationships in spontaneous reporting databases that could signal possible adverse drug reactions. At present, there are no guidelines or standards for the use of these methods in routine pharmaco-vigilance. In 2003, a group of statisticians, pharmaco-epidemiologists and pharmaco-vigilance professionals from the pharmaceutical industry and the US FDA formed the Pharmaceutical Research and Manufacturers of America-FDA Collaborative Working Group on Safety Evaluation Tools to review best practices for the use of these methods.In this paper, we provide an overview of: (i) the statistical and operational attributes of several currently used methods and their strengths and limitations; (ii) information about the characteristics of various postmarketing safety databases with which these tools can be deployed; (iii) analytical considerations for using safety data-mining methods and interpreting the results; and (iv) points to consider in integration of safety data mining with traditional pharmaco-vigilance methods. Perspectives from both the FDA and the industry are provided. Data mining is a potentially useful adjunct to traditional pharmaco-vigilance methods. The results of data mining should be viewed as hypothesis generating and should be evaluated in the context of other relevant data. The availability of a publicly accessible global safety database, which is updated on a frequent basis, would further enhance detection and communication about safety issues.
Robust tools for monitoring the safety of marketed therapeutic products are of paramount importance to public health. In recent years, innovative statistical approaches have been developed to screen large post-marketing safety databases for adverse events (AEs) that occur with disproportionate frequency. These methods, known variously as quantitative signal detection, disproportionality analysis, or safety data mining, facilitate the identification of new safety issues or possible harmful effects of a product. In this article, we describe the statistical concepts behind these methods, as well as their practical application to monitoring the safety of pharmaceutical products using spontaneous AE reports. We also provide examples of how these tools can be used to identify novel drug interactions and demographic risk factors for adverse drug reactions. Challenges, controversies, and frontiers for future research are discussed.
This newly developed list of drugs associated with hepatotoxicity and the multifaceted analysis on hepatotoxicity will aid in causality assessment and clinical diagnosis of DILI and will provide a basis for further characterization of hepatotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.