Prostaglandins have wide-ranging effects in the body and are thought to be important mediators of inflammation. Cyclooxygenase (COX) plays a key regulatory role in prostaglandin synthesis, and occurs in both constitutive (COX-1) and inducible (COX-2) isoforms. COX-1 is thought to provide cytoprotective effects, whereas COX-2 is both inducible and the major isoform of inflammatory cells. Reduction of prostaglandin production by inhibition of cyclooxygenases appears to be the main mechanism of action of most non-steroidal anti-inflammatory drugs (NSAIDS). Here we present an animal model of COX-2 deficiency that was generated by gene targeting. Defects in null mice correlating with reduced viability included renal alterations, characteristic of renal dysplasia (100% penetrance), and cardiac fibrosis (50% penetrance). Female Cox-2-/- mice were infertile. COX-2 deficiency failed to alter inflammatory responses in several standard models, but striking mitigation of endotoxin-induced hepatocellular cytotoxicity was observed.
BACKGROUNDPolycythemia vera (PV) is a myeloproliferative neoplasm associated with somatic gain-of-function mutations of Janus kinase-2 (JAK2). Therapeutic options are limited in patients with advanced disease. Ruxolitinib, an oral JAK1/JAK2 inhibitor, is active in preclinical models of PV. The long-term efficacy and safety of ruxolitinib in patients with advanced PV who are refractory or intolerant to hydroxyurea were studied in a phase 2 trial.METHODSResponse was assessed using modified European LeukemiaNet criteria, which included a reduction in hematocrit to < 45% without phlebotomy, resolution of palpable splenomegaly, normalization of white blood cell and platelet counts, and reduction in PV-associated symptoms.RESULTSThirty-four patients received ruxolitinib for a median of 152 weeks (range, 31 weeks-177 weeks) or 35.0 months (range, 7.1 months-40.7 months). Hematocrit < 45% without phlebotomy was achieved in 97% of patients by week 24. Only 1 patient required a phlebotomy after week 4. Among patients with palpable splenomegaly at baseline, 44% and 63%, respectively, achieved nonpalpable spleen measurements at weeks 24 and 144. Clinically meaningful improvements in pruritus, night sweats, and bone pain were observed within 4 weeks of the initiation of therapy and maintained with continued treatment. Ruxolitinib treatment also reduced elevated levels of inflammatory cytokines and granulocyte activation. Thrombocytopenia and anemia were the most common adverse events. Thrombocytopenia of ≥ grade 3 or anemia of ≥ grade 3 (according to National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0) occurred in 3 patients each (9%) (1 patient had both) and were managed with dose modification.CONCLUSIONSRuxolitinib was generally well tolerated and provided rapid and durable clinical benefits in patients with advanced PV who were refractory or intolerant to hydroxyurea. Cancer 2014;120:513–20. © 2013 The Authors published by Wiley Periodicals, Inc. on behalf of American Cancer Society.In the current study, patients with polycythemia vera who were refractory or intolerant to hydroxyurea achieved clinically meaningful and durable benefit from treatment with ruxolitinib with respect to reductions in hematocrit, platelet and white blood cell counts, splenomegaly, and symptoms. Given the limited therapeutic options for patients with advanced polycythemia vera, these results suggest that ruxolitinib has the potential to address an important unmet medical need in this patient population.
JAKs are required for signaling initiated by several cytokines (e.g., IL-4, IL-12, IL-23, thymic stromal lymphopoietin (TSLP), and IFNγ) implicated in the pathogenesis of inflammatory skin diseases such as psoriasis and atopic dermatitis (AD). Direct antagonism of cytokines, such as IL-12 and IL-23 using ustekinumab, has proven effective in randomized studies in psoriasis patients. We hypothesized that local inhibition of cytokine signaling using topical administration of INCB018424, a small molecule inhibitor of JAK1 and JAK2, would provide benefit similar to systemic cytokine neutralization. In cellular assays, INCB018424 inhibits cytokine-induced JAK/signal transducers and activators of transcription (STAT) signaling and the resultant production of inflammatory proteins (e.g., IL-17, monocyte chemotactic protein-1, and IL-22) in lymphocytes and monocytes, with half-maximal inhibitory concentration values <100 nM. In vivo, topical application of INCB018424 resulted in suppression of STAT3 phosphorylation, edema, lymphocyte infiltration, and keratinocyte proliferation in a murine contact hypersensitivity model and inhibited tissue inflammation induced by either intradermal IL-23 or TSLP. Topical INCB018424 was also well tolerated in a 28-day safety study in Gottingen minipigs. These results suggest that localized JAK1/JAK2 inhibition may be therapeutic in a range of inflammatory skin disorders such as psoriasis and AD. Clinical evaluation of topical INCB018424 is ongoing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.