Recent reports have asserted that, because of energy underreporting, dietary self-report data suffer from measurement error so great that findings that rely on them are of no value. This commentary considers the amassed evidence that shows that self-report dietary intake data can successfully be used to inform dietary guidance and public health policy. Topics discussed include what is known and what can be done about the measurement error inherent in data collected by using self-report dietary assessment instruments and the extent and magnitude of underreporting energy compared with other nutrients and food groups. Also discussed is the overall impact of energy underreporting on dietary surveillance and nutritional epidemiology. In conclusion, 7 specific recommendations for collecting, analyzing, and interpreting self-report dietary data are provided: (1) continue to collect self-report dietary intake data because they contain valuable, rich, and critical information about foods and beverages consumed by populations that can be used to inform nutrition policy and assess diet-disease associations; (2) do not use self-reported energy intake as a measure of true energy intake; (3) do use self-reported energy intake for energy adjustment of other self-reported dietary constituents to improve risk estimation in studies of diet-health associations; (4) acknowledge the limitations of self-report dietary data and analyze and interpret them appropriately; (5) design studies and conduct analyses that allow adjustment for measurement error; (6) design new epidemiologic studies to collect dietary data from both short-term (recalls or food records) and long-term (food-frequency questionnaires) instruments on the entire study population to allow for maximizing the strengths of each instrument; and (7) continue to develop, evaluate, and further expand methods of dietary assessment, including dietary biomarkers and methods using new technologies.
We will demonstrate the ASA24, an automated, web‐based, self‐administered 24 hour dietary recall instrument. The application uses state‐of‐the‐art computer technology, including a tutorial, graphic enhancements, and animated characters with audio‐language cues to guide participants. Respondents select foods consumed from a list based on the US Department of Agriculture's (USDA) survey database. Respondents find foods by browsing through food groups or typing and searching. Detailed questions about reported food, adapted from USDA's Automated Multiple Pass Method (AMPM) used in national dietary surveillance, collect information about preparation methods, additions to food, and portion size. Up to 8 sequentially‐sized digital pictures aid respondents in reporting portions. Respondents are given multiple opportunities to edit their food lists. A validation study to compare ASA24 to an interviewer‐administered recall using the AMPM is planned. ASA24, publicly available, can be accessed by researchers and sent to participants over the Internet or administered in a clinic/office. ASA24 makes feasible the inexpensive administration of multiple days of recalls in large‐scale studies or clinical research, enhancing researchers' ability to assess usual dietary intakes. Support: NCI.
Although the interviewer-administered AMPM performed somewhat better relative to true intakes for matches, exclusions, and intrusions, ASA24 performed well. Given the substantial cost savings that ASA24 offers, it has the potential to make important contributions to research aimed at describing the diets of populations, assessing the effect of interventions on diet, and elucidating diet and health relations. This trial was registered at clinicaltrials.gov as NCT00978406.
We pooled data from 5 large validation studies (1999-2009) of dietary self-report instruments that used recovery biomarkers as referents, to assess food frequency questionnaires (FFQs) and 24-hour recalls (24HRs). Here we report on total potassium and sodium intakes, their densities, and their ratio. Results were similar by sex but were heterogeneous across studies. For potassium, potassium density, sodium, sodium density, and sodium:potassium ratio, average correlation coefficients for the correlation of reported intake with true intake on the FFQs were 0.37, 0.47, 0.16, 0.32, and 0.49, respectively. For the same nutrients measured with a single 24HR, they were 0.47, 0.46, 0.32, 0.31, and 0.46, respectively, rising to 0.56, 0.53, 0.41, 0.38, and 0.60 for the average of three 24HRs. Average underreporting was 5%-6% with an FFQ and 0%-4% with a single 24HR for potassium but was 28%-39% and 4%-13%, respectively, for sodium. Higher body mass index was related to underreporting of sodium. Calibration equations for true intake that included personal characteristics provided improved prediction, except for sodium density. In summary, self-reports capture potassium intake quite well but sodium intake less well. Using densities improves the measurement of potassium and sodium on an FFQ. Sodium:potassium ratio is measured much better than sodium itself on both FFQs and 24HRs.
Objective To assess the accuracy of portion-size estimates and participant preferences using various presentations of digital images. Design Two observational feeding studies were conducted. In both, each participant selected and consumed foods for breakfast and lunch, buffet style, serving themselves portions of nine foods representing five forms (eg, amorphous, pieces). Serving containers were weighed unobtrusively before and after selection as was plate waste. The next day, participants used a computer software program to select photographs representing portion sizes of foods consumed the previous day. Preference information was also collected. In Study 1 (n=29), participants were presented with four different types of images (aerial photographs, angled photographs, images of mounds, and household measures) and two types of screen presentations (simultaneous images vs an empty plate that filled with images of food portions when clicked). In Study 2 (n=20), images were presented in two ways that varied by size (large vs small) and number (4 vs 8). Subjects/setting Convenience sample of volunteers of varying background in an office setting. Statistical analyses performed Repeated-measures analysis of variance of absolute differences between actual and reported portions sizes by presentation methods. Results Accuracy results were largely not statistically significant, indicating that no one image type was most accurate. Accuracy results indicated the use of eight vs four images was more accurate. Strong participant preferences supported presenting simultaneous vs sequential images. Conclusions These findings support the use of aerial photographs in the automated self-administered 24-hour recall. For some food forms, images of mounds or household measures are as accurate as images of food and, therefore, are a cost-effective alternative to photographs of foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.