Increased transcription of ribosomal RNA genes (rDNA) by RNA Polymerase I is a common feature of human cancer, but whether it is required for the malignant phenotype remains unclear. We show that rDNA transcription can be therapeutically targeted with the small molecule CX-5461 to selectively kill B-lymphoma cells in vivo while maintaining a viable wild-type B cell population. The therapeutic effect is a consequence of nucleolar disruption and activation of p53-dependent apoptotic signaling. Human leukemia and lymphoma cell lines also show high sensitivity to inhibition of rDNA transcription that is dependent on p53 mutational status. These results identify selective inhibition of rDNA transcription as a therapeutic strategy for the cancer specific activation of p53 and treatment of hematologic malignancies.
Malignant transformation and maintenance of the malignant phenotype depends on oncogenic and nononcogenic proteins that are essential to mediate oncogene signaling and to support the altered physiologic demands induced by transformation. Protein kinase CK2 supports key prosurvival signaling pathways and represents a prototypical non-oncogene. In this study, we describe CX-4945, a potent and selective orally bioavailable small molecule inhibitor of CK2. The antiproliferative activity of CX-4945 against cancer cells correlated with expression levels of the CK2a catalytic subunit. Attenuation of PI3K/Akt signaling by CX-4945 was evidenced by dephosphorylation of Akt on the CK2-specific S129 site and the canonical S473 and T308 regulatory sites. CX-4945 caused cell-cycle arrest and selectively induced apoptosis in cancer cells relative to normal cells. In models of angiogenesis, CX-4945 inhibited human umbilical vein endothelial cell migration, tube formation, and blocked CK2-dependent hypoxia-induced factor 1 alpha (HIF-1a) transcription in cancer cells. When administered orally in murine xenograft models, CX-4945 was well tolerated and demonstrated robust antitumor activity with concomitant reductions of the mechanism-based biomarker phospho-p21 (T145). The observed antiproliferative and anti-angiogenic responses to CX-4945 in tumor cells and endothelial cells collectively illustrate that this compound exerts its antitumor effects through inhibition of CK2-dependent signaling in multiple pathways. Finally, CX-4945 is the first orally bioavailable small molecule inhibitor of CK2 to advance into human clinical trials, thereby paving the way for an entirely new class of targeted treatment for cancer. Cancer Res; 70(24); 10288-98. Ó2010 AACR.
Inhibition of heat shock protein 90 (Hsp90) results in the degradation of oncoproteins that drive malignant progression, inducing cell death, making Hsp90 a target of substantial interest for cancer therapy. BIIB021 is a novel, fully synthetic inhibitor of Hsp90 that binds competitively with geldanamycin in the ATP-binding pocket of Hsp90. In tumor cells, BIIB021 induced the degradation of Hsp90 client proteins including HER-2, AKT, and Raf-1 and up-regulated expression of the heat shock proteins Hsp70 and Hsp27. BIIB021 treatment resulted in growth inhibition and cell death in cell lines from a variety of tumor types at nanomolar concentrations. Oral administration of BIIB021 led to the degradation of Hsp90 client proteins measured in tumor tissue and resulted in the inhibition of tumor growth in several human tumor xenograft models. Studies to investigate the antitumor effects of BIIB021 showed activity on both daily and intermittent dosing schedules, providing dose schedule flexibility for clinical studies. Assays measuring the HER-2 protein in tumor tissue and the HER-2 extracellular domain in plasma were used to show interdiction of the Hsp90 pathway and utility as potential biomarkers in clinical trials for BIIB021. Together, these data show that BIIB021 is a promising new oral inhibitor of Hsp90 with antitumor activity in preclinical models. [Mol Cancer Ther 2009;8(4):921-9] IntroductionHeat shock protein 90 (Hsp90) is a widely expressed molecular chaperone that functions in the maturation and stabilization of cellular proteins (1-3). Hsp90, in complex with other cochaperone proteins, catalyzes the conformational changes of client proteins via its ATPase activity (4). The activity of Hsp90 maintains a variety of client proteins in their active conformation (5). Hsp90 also plays an important role in the regulation of several key oncogenic signaling proteins (6-8) and steroid receptors (9). Mutated proteins are particularly dependent on Hsp90 for the maintenance of the active conformation (2, 3).Ansamycin drugs such as geldanamycin bind in the ATPbinding site in the NH 2 terminus of Hsp90 (6, 10). This binding inhibits the chaperone activity of Hsp90 and results in proteasomal degradation of the client proteins (5, 11-13). Because tumor cells rely on the activity of client proteins for cell proliferation and survival, drug-induced client protein degradation leads to cytostasis and/or selective cell killing of tumor cell in vitro and in vivo (14-16).The semisynthetic Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in clinical trials for cancer (17)(18)(19). However, 17-AAG is expensive to prepare and difficult to formulate. The problematic nature of the formulations may well contribute to the dose-limiting toxicity observed with this compound. 17-AAG is also susceptible to metabolism by NQO1/DT-diaphorase enzymes (20) and to efflux by P-glycoprotein (21). The identification of a synthetic Hsp90 inhibitor would be of great therapeutic interest as it would circumvent t...
Accelerated proliferation of solid tumor and hematologic cancer cells is linked to accelerated transcription of rDNA by the RNA polymerase I (Pol I) enzyme to produce elevated levels of rRNA (rRNA). Indeed, upregulation of Pol I, frequently caused by mutational alterations among tumor suppressors and oncogenes, is required for maintenance of the cancer phenotype and forms the basis for seeking selective inhibitors of Pol I as anticancer therapeutics. 2-(4-Methyl-[1,4]diazepan-1-yl)-5-oxo-5H-7-thia-1,11b-diaza-benzo[c]fluorene-6-carboxylic acid (5-methyl-pyrazin-2-ylmethyl)-amide (CX-5461, 7c) has been identified as the first potent, selective, and orally bioavailable inhibitor of RNA Pol I transcription with in vivo activity in tumor growth efficacy models. The preclinical data support the development of CX-5461 as an anticancer drug with potential for activity in several types of cancer.
Drug combination therapies are commonly used for the treatment of cancers to increase therapeutic efficacy, reduce toxicity, and decrease the incidence of drug resistance. Although drug combination therapies were originally devised primarily by empirical methods, the increased understanding of drug mechanisms and the pathways they modulate provides a unique opportunity to design combinations that are based on mechanistic rationale. We have identified protein kinase CK2 as a promising therapeutic target for combination therapy, because CK2 regulates not just one but many oncogenic pathways and processes that play important roles in drug resistance, including DNA repair, epidermal growth factor receptor signaling, PI3K/AKT/mTOR signaling, Hsp90 machinery activity, hypoxia, and interleukin-6 expression. In this article, we show that CX-4945, a clinical stage selective small molecule inhibitor of CK2, blocks the DNA repair response induced by gemcitabine and cisplatin and synergizes with these agents in models of ovarian cancer. Mechanistic studies show that the enhanced activity is a result of inactivation of XRCC1 and MDC1, two mediator/adaptor proteins that are essential for DNA repair and that require phosphorylation by CK2 for their function. These data position CK2 as a valid pharmacologic target for intelligent drug combinations and support the evaluation of CX-4945 in combination with gemcitabine and platinum-based chemotherapeutics in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.