Postintubation tracheal stenosis is a complication of endotracheal intubation. The pathological mechanism and risk factors for endotracheal intubation-induced tracheal stenosis remain not fully understood. We aimed to establish an animal model and to investigate risk factors for postintubation tracheal stenosis. Beagles were intubated with 4 sized tubes (internal diameter 6.5 to 8.0 mm) and cuff pressures of 100 to 200 mmHg for 24 hr. The status of tracheal wall was evaluated by bronchoscopic and histological examinations. The model was successfully established by cuffed endotracheal intubation using an 8.0 mm tube and an intra-cuff pressure of 200 mmHg for 24 hr. When the intra-cuff pressures were kept constant, a larger sized tube would induce a larger tracheal wall pressure and more severe injury to the tracheal wall. The degree of tracheal stenosis ranged from 78% to 91% at 2 weeks postextubation. Histological examination demonstrated submucosal infiltration of inflammatory cells, hyperplasia of granulation tissue and collapse of tracheal cartilage. In summary, a novel animal model of tracheal stenosis was established by cuffed endotracheal intubation, whose histopathological feathers are similar to those of clinical cases of postintubation tracheal stenosis. Excessive cuff pressure and over-sized tube are the risk factors for postintubation tracheal stenosis.
Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing approximately 1–2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases (UGTs). Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UGTs and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.
Clinical value of metagenomic next-generation sequencing (mNGS) in pneumonia management is still controversial. A prospective study was conducted to evaluate the clinical impact of PneumoSeq in 57 immunocompetent (ICO) and 75 immunocompromised (ICH) pneumonia patients. The value of PneumoSeq for both etiological and clinical impact investigation in pneumonia was assessed. Among the 276 potential pathogens detected with PneumoSeq in our cohort, 251 (90.9%) were cross-validated. Clinical diagnoses of the causative pathogens were obtained for 97 patients, 90.7% of which were supported by PneumoSeq. Compared to conventional testing, PneumoSeq suggested potentially missed diagnoses in 16.7% of cases (22/132), involving 48 additional pathogenic microorganisms. In 58 (43.9%) cases, PneumoSeq data led to antimicrobial treatment de-escalation (n = 12 in ICO, n = 18 in ICH) and targeted treatment initiation (n = 7 in ICO, n = 21 in ICH). The PneumoSeq assay benefited the diagnosis and clinical management of both ICH and ICO pneumonia patients in real-world settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.