The body-centered cubic A15-structured cesium fulleride Cs3C60 is not superconducting at ambient pressure and is free from disorder, unlike the well-studied face-centered cubic A3C60 alkali metal fulleride superconductors. We found that in Cs3C60, where the molecular valences are precisely assigned, the superconducting state at 38 kelvin emerges directly from a localized electron antiferromagnetic insulating state with the application of pressure. This transition maintains the threefold degeneracy of the active orbitals in both competing electronic states; it is thus a purely electronic transition to a superconducting state, with a dependence of the transition temperature on pressure-induced changes of anion packing density that is not explicable by Bardeen-Cooper-Schrieffer (BCS) theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.