Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
Background We aimed to elucidate differences in the characteristics of patients with coronavirus disease 2019 (COVID-19) requiring hospitalization in Japan, by COVID-19 waves, from conventional strains to the Delta variant. Methods We used secondary data from a database and performed a retrospective cohort study that included 3261 patients aged ≥ 18 years enrolled from 78 hospitals that participated in the Japan COVID-19 Task Force between February 2020 and September 2021. Results Patients hospitalized during the second (mean age, 53.2 years [standard deviation {SD}, ± 18.9]) and fifth (mean age, 50.7 years [SD ± 13.9]) COVID-19 waves had a lower mean age than those hospitalized during the other COVID-19 waves. Patients hospitalized during the first COVID-19 wave had a longer hospital stay (mean, 30.3 days [SD ± 21.5], p < 0.0001), and post-hospitalization complications, such as bacterial infections (21.3%, p < 0.0001), were also noticeable. In addition, there was an increase in the use of drugs such as remdesivir/baricitinib/tocilizumab/steroids during the latter COVID-19 waves. In the fifth COVID-19 wave, patients exhibited a greater number of presenting symptoms, and a higher percentage of patients required oxygen therapy at the time of admission. However, the percentage of patients requiring invasive mechanical ventilation was the highest in the first COVID-19 wave and the mortality rate was the highest in the third COVID-19 wave. Conclusions We identified differences in clinical characteristics of hospitalized patients with COVID-19 in each COVID-19 wave up to the fifth COVID-19 wave in Japan. The fifth COVID-19 wave was associated with greater disease severity on admission, the third COVID-19 wave had the highest mortality rate, and the first COVID-19 wave had the highest percentage of patients requiring mechanical ventilation.
To elucidate the host genetic loci affecting severity of SARS-CoV-2 infection, or Coronavirus disease 2019 (COVID-19), is an emerging issue in the face of the current devastating pandemic. Here, we report a genome-wide association study (GWAS) of COVID-19 in a Japanese population led by the Japan COVID-19 Task Force, as one of the initial discovery GWAS studies performed on a non-European population. Enrolling a total of 2,393 cases and 3,289 controls, we not only replicated previously reported COVID-19 risk variants (e.g., LZTFL1, FOXP4, ABO, and IFNAR2), but also found a variant on 5p35 (rs60200309-A at DOCK2) that was significantly associated with severe COVID-19 in younger (<65 years of age) patients with a genome-wide significant p-value of 1.2 × 10-8 (odds ratio = 2.01, 95% confidence interval = 1.58-2.55). This risk allele was prevalent in East Asians, including Japanese (minor allele frequency [MAF] = 0.097), but rarely found in Europeans. Cross-population Mendelian randomization analysis made a causal inference of a number of complex human traits on COVID-19. In particular, obesity had a significant impact on severe COVID-19. The presence of the population-specific risk allele underscores the need of non-European studies of COVID-19 host genetics.
Background: Omalizumab, an anti-immunoglobulin E (IgE) monoclonal antibody, inhibits the binding of circulating IgE to mast cells and basophils, resulting in fewer episodes of airway inflammation, asthma symptoms and exacerbations in patients with severe allergic asthma. Treatment of patients with asthma using omalizumab increases serum total IgE (tIgE) levels. However, little is known about the influence of omalizumab on allergen-specific IgE (sIgE). Methods: tIgE and sIgE in 47 adult patients with severe asthma were measured with a fluorescent enzyme immunoassay (ImmunoCAP-FEIA) before and after omalizumab treatment. Results: Treatment with omalizumab increased tIgE and sIgE levels. The increases in sIgE by class category after omalizumab treatment were positively correlated with baseline sIgE positivity before treatment. The mean changes in sIgE levels after omalizumab treatment were also correlated with baseline sIgE levels before treatment. The mean changes in tIgE levels were positively correlated with the mean changes in IgE levels against Dermatophagoides pteronyssinus, crude house dust, Japanese cedar and moth. Omalizumab markedly influenced the negative-to-positive seroconversion rate for IgE against Japanese cedar (30.8%), Candida (29.0%) and moth (28.0%). Finally, all patients with negative-to-positive seroconversion for Japanese cedar-specific IgE had cedar pollinosis before beginning omalizumab treatment. Conclusions: The changes in sIgE levels after omalizumab treatment may be dependent on the baseline sIgE levels. Our data may indicate the presence of undetectable but functional sIgE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.