Background: To seek insights into the pathogenesis of chronic active antibody-mediated rejection (CAMR), we performed mRNA analysis and correlated transcripts with pathologic component scores and graft outcomes. Methods: We utilized the NanoString nCounter platform and the Banff Human Organ Transplant gene panel to quantify transcripts on 326 archived renal allograft biopsy samples. This system allowed correlation of transcripts with Banff pathology scores from the same tissue block as well as correlation with long-term outcomes. Results: The only pathology score that correlated with AMR pathways in CAMR was peritubular capillaritis (ptc). C4d, cg, g, v, i, t, or ci scores did not correlate. DSA-negative CAMR had lower AMR pathway scores than DSA-positive CAMR. Transcript analysis in non-CAMR biopsies yielded evidence of increased risk of later CAMR. Among 108 patients without histologic CAMR, 23 developed overt biopsy-documented CAMR within 5 years and as a group had higher AMR pathway scores (p=3.4x10-5). Random forest analysis correlated three-year graft loss with elevated damage, innate immunity, and macrophage pathway scores in CAMR and TCMR.. Graft failure in CAMR was associated with TCMR transcripts but not with AMR transcripts, and graft failure in TCMR was associated with AMR transcripts but not with TCMR transcripts. Conclusions: Peritubular capillary inflammation and DSA are the primary drivers of AMR transcript elevation. Transcripts revealed subpathological evidence of AMR, which often preceded histological CAMR and subpathological evidence of TCMR that predicted graft loss in CAMR.
Chronic active antibody-mediated rejection (CAAMR) is a particular problem in kidney transplantation (KTx), and ~25% of grafts are lost by CAAMR. Further, the pathogenesis remains unclear, and there is no effective cure or marker. We previously found that a hyper NFκB-activating mechanism in non-immune cells, called the IL-6 amplifier, is induced by the co-activation of NFκB and STAT3, and that this activation can develop various chronic inflammatory diseases. Here, we show that synaptotagmin-17 (SYT17) is increased in an exosomal fraction of the urine from CAAMR patients, and that this increase is associated with activation of the IL-6 amplifier. Immunohistochemistry showed that SYT17 protein expression was increased in renal tubule cells of the CAAMR group. While SYT17 protein was not detectable in whole-urine samples by western blotting, urinary exosomal SYT17 levels were significantly elevated in the CAAMR group compared to three other histology groups (normal, interstitial fibrosis and tubular atrophy, and calcineurin inhibitors toxicity) after KTx. On the other hand, current clinical laboratory data could not differentiate the CAAMR group from these groups. These data suggest that urinary exosomal SYT17 is a potential diagnostic marker for CAAMR.
Background Our aim was to characterize the motions of multiple laparoscopic surgical instruments among participants with different levels of surgical experience in a series of wet-lab training drills, in which participants need to perform a range of surgical procedures including grasping tissue, tissue traction and dissection, applying a Hem-o-lok clip, and suturing/knotting, and digitize the level of surgical competency. Methods Participants performed tissue dissection around the aorta, dividing encountered vessels after applying a Hem-o-lok (Task 1), and renal parenchymal closure (Task 2: suturing, Task 3: suturing and knot-tying), using swine cadaveric organs placed in a box trainer under a motion capture (Mocap) system. Motion-related metrics were compared according to participants’ level of surgical experience (experts: 50 ≤ laparoscopic surgeries, intermediates: 10–49, novices: 0–9), using the Kruskal–Wallis test, and significant metrics were subjected to principal component analysis (PCA). Results A total of 15 experts, 12 intermediates, and 18 novices participated in the training. In Task 1, a shorter path length and faster velocity/acceleration/jerk were observed using both scissors and a Hem-o-lok applier in the experts, and Hem-o-lok-related metrics markedly contributed to the 1st principal component on PCA analysis, followed by scissors-related metrics. Higher-level skills including a shorter path length and faster velocity were observed in both hands of the experts also in tasks 2 and 3. Sub-analysis showed that, in experts with 100 ≤ cases, scissors moved more frequently in the “close zone (0 ≤ to < 2.0 cm from aorta)” than those with 50–99 cases. Conclusion Our novel Mocap system recognized significant differences in several metrics in multiple instruments according to the level of surgical experience. “Applying a Hem-o-lok clip on a pedicle” strongly reflected the level of surgical experience, and zone-metrics may be a promising tool to assess surgical expertise. Our next challenge is to give completely objective feedback to trainees on-site in the wet-lab.
Objectives: To develop a wet laboratory training model for learning core laparoscopic surgical skills and evaluating learners' competency level outside the operating room. Methods: Participants completed three tasks (task 1: tissue dissection around the aorta; task 2: tissue dissection and division of the renal artery; task 3: renal parenchymal closure). Each performance was video recorded and subsequently evaluated by two experts, according to the Global Operative Assessment of Laparoscopic Skills and taskspecific metrics that we developed (Assessment Sheet of Laparoscopic Skills in Wet Lab score). Mean scores were used for analyses. The subjective mental workload was also assessed (NASA Task Load Index). Results: The 54 participants included 32 urologists, eight young trainees and 14 medical students. A total of 13 participants were categorized as experts (≥50 laparoscopic surgeries), eight as intermediates (10-49) and 33 as novices (0-9). There were significant differences in the Global Operative Assessment of Laparoscopic Skills and Assessment Sheet of Laparoscopic Skills in Wet Lab scores among the three groups in all three tasks. Higher NASA Task Load Index scores were observed in novices, and there were significant differences in tasks 1 (Kruskal-Wallis test, P = 0.0004) and 2 (P = 0.0002), and marginal differences in task 3 (P = 0.0745) among the three groups. Conclusions: Our training model has good construct validity, and differences in the NASA Task Load Index score reflect previous laparoscopic surgical experiences. Our findings show the ability to assess both laparoscopic surgical skills and mental workloads, which could help educators comprehend trainees' level outside the operating room. Given the decreasing opportunity to carry out pure laparoscopic surgeries because of the dissemination of robotic surgery, especially in urology, our model can offer practical training opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.