Cancers acquire resistance to systemic treatment with platinum‐based chemotherapy (eg, cisplatin [CDDP]) as a result of a dynamic intratumoral heterogeneity (ITH) and clonal repopulation. However, little is known about the influence of chemotherapy on ITH at the single‐cell level. Here, mapping the transcriptome of cancers treated with CDDP by scRNA‐seq, we uncovered a novel gene, COX7B, associated with platinum‐resistance, and surrogate marker, CD63. Knockdown of COX7B in cancer cells decreased the sensitivity of CDDP whereas overexpression recovered the sensitivity of CDDP. Low COX7B levels correlated with higher mortality rates in patients with various types of cancer and were significantly associated with poor response to chemotherapy in urinary bladder cancer. Tumor samples from patients, who underwent CDDP therapy, showed decreased COX7B protein levels after the treatment. Analyzing scRNA‐seq data from platinum‐naïve cancer cells demonstrated a low‐COX7B subclone that could be sorted out from bulk cancer cells by assaying CD63. This low‐COX7B subclone behaved as cells with acquired platinum‐resistance when challenged to CDDP. Our results offer a new transcriptome landscape of platinum‐resistance that provides valuable insights into chemosensitivity and drug resistance in cancers, and we identify a novel platinum resistance gene, COX7B, and a surrogate marker, CD63.
Cover image: The image represents a 3D heterogeneous tissue. The left blurry part represents a tissue without tissue-clearing methods and the right part shows a tissue after clearing. 3D IMAGING AND QUANTITATIVE ANALYSIS OF INTACT TISSUES AND ORGANS THESIS FOR DOCTORAL DEGREE (Ph.D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.