Since December 2019, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused severe pneumonia, a disease named COVID-19, that became pandemic and created an acute threat to public health. The effective therapeutics are in urgent need. Here, we developed a high-content screening for the antiviral candidates using fluorescence-based SARS-CoV-2 nucleoprotein detection in Vero E6 cells coupled with plaque reduction assay. Among 122 Thai natural products, we found that Boesenbergia rotunda extract and its phytochemical compound, panduratin A, exhibited the potent anti-SARS-CoV-2 activity. Treatment with B. rotunda extract and panduratin A after viral infection drastically suppressed SARS-CoV-2 infectivity in Vero E6 cells with IC50 of 3.62 μg/mL (CC50 = 28.06 µg/mL) and 0.81 μΜ (CC50 = 14.71 µM), respectively. Also, the treatment of panduratin A at the pre-entry phase inhibited SARS-CoV-2 infection with IC50 of 5.30 µM (CC50 = 43.47 µM). Our study demonstrated, for the first time, that panduratin A exerts the inhibitory effect against SARS-CoV-2 infection at both pre-entry and post-infection phases. Apart from Vero E6 cells, treatment with this compound was able to suppress viral infectivity in human airway epithelial cells. This result confirmed the potential of panduratin A as the anti-SARS-CoV-2 agent in the major target cells in human. Since B. rotunda is a culinary herb generally grown in China and Southeast Asia, its extract and the purified panduratin A may serve as the promising candidates for therapeutic purposes with economic advantage during COVID-19 situation.
Since December 2019, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused severe pneumonia, a disease named COVID-19, that became pandemic and created an acute threat to public health. The effective therapeutics are in urgent need. Here, we developed a high-content screening for the antiviral candidates using fluorescence-based SARS-CoV-2 nucleoprotein detection in Vero E6 cells coupled with plaque reduction assay. Among 122 Thai natural products, we found that Boesenbergia rotunda extract and its phytochemical compound, panduratin A, exhibited the potent anti-SARS-CoV-2 activity. Treatment with B. rotunda extract and panduratin A after viral infection drastically suppressed SARS-CoV-2 infectivity in Vero E6 cells with IC50 of 3.62 μg/mL (CC50 = 28.06 µg/mL) and 0.81 μΜ (CC50=14.71 µM), respectively. Also, the treatment of panduratin A at the pre-entry phase inhibited SARS-CoV-2 infection with IC50 of 5.30 µM (CC50=43.47 µM). Our study demonstrated, for the first time, that panduratin A exerts the inhibitory effect against SARS-CoV-2 infection at both pre-entry and post-infection phases. Since B. rotunda is a culinary herb generally grown in China and Southeast Asia, its extract and the purified panduratin A may serve as the promising candidates for therapeutic purposes with economic advantage during COVID-19 situation.
Background: Cisplatin is an effective chemotherapy but its main side effect, acute kidney injury, limits its use. Panduratin A, a bioactive compound extracted from Boesenbergia rotunda, shows several biological activities such as anti-oxidative effects. The present study investigated the nephroprotective effect of panduratin A on cisplatin-induced renal injury. Methods: We investigated the effect of panduratin A on the toxicity of cisplatin in both mice and human renal cell cultures using RPTEC/TERT1 cells. Results: The results demonstrated that panduratin A ameliorates cisplatin-induced renal toxicity in both mice and RPTEC/ TERT1 cells by reducing apoptosis. Mice treated with a single intraperitoneal (i.p.) injection of cisplatin (20 mg/kg body weight (BW)) exhibited renal tubule injury and impaired kidney function as shown by histological examination and increased serum creatinine. Co-administration of panduratin A (50 mg/kg BW) orally improved kidney function and ameliorated renal tubule injury of cisplatin by inhibiting activation of extracellular signal-regulated kinase (ERK)1/2 and caspase 3. In human renal proximal tubular cells, cisplatin induced cell apoptosis by activating pro-apoptotic proteins (ERK1/2 and caspase 3), and reducing the anti-apoptotic protein (Bcl-2). These effects were significantly ameliorated by co-treatment with panduratin A. Interestingly, panduratin A did not alter intracellular accumulation of cisplatin. It did not alter the anticancer efficacy of cisplatin in either human colon or non-small cell lung cancer cell lines. Conclusions: The present study highlights panduratin A has a potential protective effect on cisplatin's nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.