Citrullinated proteins are the products of a posttranslational process in which arginine residues undergo modification into citrulline residues when catalyzed by peptidylarginine deiminases (PADs) in a calcium ion-dependent manner. In our previous report, PAD2 expressed mainly in the rat cerebrum became activated early in the neurodegenerative process. To elucidate the involvement of protein citrullination in human neuronal degeneration, we examined whether citrullinated proteins are produced during Alzheimer's disease (AD). By Western blot analysis with antimodified citrulline antibody, citrullinated proteins of varied molecular weights were detected in hippocampal tissues from patients with AD but not normal humans. Two of the citrullinated proteins were identified as vimentin and glial fibrillary acidic protein (GFAP) by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Interestingly, PAD2 was detected in hippocampal extracts from AD and normal brains, but the amount of PAD2 in the AD tissue was markedly greater. Histochemical analysis revealed citrullinated proteins throughout the hippocampus, especially in the dentate gyrus and stratum radiatum of CA1 and CA2 areas. However, no citrullinated proteins were detected in the normal hippocampus. PAD2 immunoreactivity was also ubiquitous throughout both the AD and the normal hippocampal areas. PAD2 enrichment coincided well with citrullinated protein positivity. Double immunofluorescence staining revealed that citrullinated protein- and PAD2-positive cells also coincided with GFAP-positive cells, but not all GFAP-positive cells were positive for PAD2. As with GFAP, which is an astrocyte-specific marker protein, PAD2 is distributed mainly in astrocytes. These collective results, the abnormal accumulation of citrullinated proteins and abnormal activation of PAD2 in hippocampi of patients with AD, strongly suggest that PAD has an important role in the onset and progression of AD and that citrullinated proteins may become a useful marker for human neurodegenerative diseases.
A number of chromosomal abnormalities including 19q deletions have been associated with the formation of human gliomas. In this study, we employed a proteomics-based approach to identify possible genes involved in glioma tumorigenesis which may serve as potential diagnostic molecular markers for this type of cancer. By comparing protein spots from gliomas and non-tumor tissues using two-dimensional (2D) gel electrophoresis, we identified 11 up-regulated proteins and four down-regulated proteins in gliomas. Interestingly, we also discovered that a group of cytoskeleton-related proteins are differentially regulated in gliomas, suggesting the involvement of cytoskeleton modulation in glioma pathogenesis. We then focused on the cytoskeleton-related protein, SIRT2 (sirtuin homologue 2) tubulin deacetylase, which was down-regulated in gliomas. SIRT2 is located at 19q13.2, a region known to be frequently deleted in human gliomas. Subsequent Northern blot analysis revealed that RNA expression of SIRT2 was dramatically diminished in 12 out of 17 gliomas and glioma cell lines, in agreement with proteomic data. Furthermore, ectopic expression of SIRT2 in glioma cell lines led to the perturbation of the microtubule network and caused a remarkable reduction in the number of stable clones expressing SIRT2 as compared to that of a control vector in colony formation assays. These results suggest that SIRT2 may act as a tumor suppressor gene in human gliomas possibly through the regulation of microtubule network and may serve as a novel molecular marker for gliomas. Additional proteins were also identified, whose function in gliomas was previously unsuspected.
It is possible that both NDP kinase and the nm23 gene product may be active in the progression and differentiation of tumor cells and that their reduced expression induces a high metastatic potential in tumor cells. Studies using Northern blotting or in situ hybridization should be planned to confirm our findings.
We have previously reported that GDP‐bound αβγ‐trimeric GTP‐binding (G) proteins can be converted into the active GTP‐bound form with nucleoside diphosphate (NDP) kinase and ATP, although its exact activation mechanism still remains to be resolved. In the present study, we investigated whether NDP kinase activity was modified by mastoparan, a wasp venom peptide that is known to activate G proteins as an agonist‐receptor complex. The activity of NDP kinase measured by the formation of GTP from ATP and GDP was markedly stimulated, when the kinase was incubated with mastoparan. The concentration of mastoparan required for the activation was much lower than that observed for the peptidc‐induced activation of G proteins under similar assay conditions. There was also an increase in the phosphorylated intermediate of NDP kinase as well as the catalytic activity upon its incubation with mastoparan. These results suggest that mastoparan not only activates G proteins directly via guanine nucleotide exchange reaction but also stimulates NDP kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.