Purpose: To characterize the molecular genetic profiles of grade 3 invasive ductal carcinomas of no special type using high-resolution microarray-based comparative genomic hybridization (aCGH) and to identify recurrent amplicons harboring putative therapeutic targets associated with luminal, HER-2, and basal-like tumor phenotypes. Experimental Design: Ninety-five grade 3 invasive ductal carcinomas of no special type were classified into luminal, HER-2, and basal-like subgroups using a previously validated immunohistochemical panel. Tumor samples were microdissected and subjected to aCGH using a tiling path 32K BAC array platform. Selected regions of recurrent amplification were validated by means of in situ hybridization. Expression of genes pertaining to selected amplicons was investigated using quantitative real-time PCR and gene silencing was done using previously validated short hairpin RNA constructs. Results: We show that basal-like and HER-2 tumors are characterized by ''sawtooth'' and ''firestorm'' genetic patterns, respectively, whereas luminal cancers were more heterogeneous. Apart from confirming known amplifications associated with basal-like (1q21, 10p, and 12p), luminal (8p12, 11q13, and 11q14), and HER-2 (17q12) cancers, we identified previously unreported recurrent amplifications associated with each molecular subgroup: 19q12 in basal-like, 1q32.1 in luminal, and 14q12 in HER-2 cancers. PPM1D gene amplification (17q23.2) was found in 20% and 8% of HER-2 and luminal cancers, respectively. Silencing of PPM1D by short hairpin RNA resulted in selective loss of viability in tumor cell lines harboring the 17q23.2 amplification. Conclusions: Our results show the power of aCGH analysis in unraveling the genetic profiles of specific subgroups of cancer and for the identification of novel therapeutic targets.
Pure invasive micropapillary carcinoma (MPC) is a special histological type that accounts for 0.7-3% of all breast cancers. MPC has a distinctive growth pattern and a more aggressive clinical behaviour than invasive ductal carcinomas of no special type (IDC-NSTs). To define the molecular characteristics of MPCs, we profiled a series of 12 MPCs and 24 grade and oestrogen receptor (ER)-matched IDC-NSTs using high-resolution microarray comparative genomic hybridization (aCGH). In addition, we generated a tissue microarray containing a series of 24 MPCs and performed immunohistochemical analysis with ER, PR, Ki-67, HER2, CK5/6, CK14, CK17, EGFR, topoisomerase-IIalpha, cyclin D1, caveolin-1, E-cadherin, and beta-catenin antibodies. In situ hybridization probes were employed to evaluate the prevalence of amplification of HER2, TOP2A, EGFR, CCND1, MYC, ESR1, and FGFR1 genes. aCGH analysis demonstrated that MPCs significantly differed from IDC-NSTs at the genomic level. Gains of 1q, 2q, 4p, 6p, 6q23.2-q27, 7p, 7q, 8p, 8q, 9p, 10p, 11q, 12p, 12q, 16p, 17p, 17q, 19p, 20p, 20q, and 21q, and losses of 1p, 2p, 6q11.1-q16.3, 6q21-q22.1, 9p, 11p, 15q, and 19q were more prevalent in MPCs. High-level gains/amplifications of 8p12-p11, 8q12, 8q13, 8q21, 8q23, 8q24, 17q21, 17q23, and 20q13 were significantly associated with MPCs. A comparison between 24 MPCs and a series of 48 grade and ER-matched IDC-NSTs revealed that high cyclin D1 expression, high proliferation rates, and MYC (8q24) amplification were significantly associated with MPCs. Our results demonstrate that MPCs have distinct histological features and molecular genetic profiles supporting the contention that they constitute a distinct pathological entity.
HER2 and TOP2A are targets for the therapeutic agents trastuzumab and anthracyclines and are frequently amplified in breast cancers. The aims of this study were to provide a detailed molecular genetic analysis of the 17q12-q21 amplicon in breast cancers harbouring HER2/TOP2A co-amplification and to investigate additional recurrent co-amplifications in HER2/ TOP2A-co-amplified cancers. In total, 15 breast cancers with HER2 amplification, 10 of which also harboured TOP2A amplification, as defined by chromogenic in situ hybridisation, and 6 breast cancer cell lines known to be amplified for HER2 were subjected to high-resolution microarray-based comparative genomic hybridisation analysis. This revealed that the genomes of 12 cases were characterised by at least one localised region of clustered, relatively narrow peaks of amplification, with each cluster confined to a single chromosome arm (ie 'firestorm' pattern) and 3 cases displayed many narrow segments of duplication and deletion affecting the vast majority of chromosomes (ie 'sawtooth' pattern). The smallest region of amplification (SRA) on 17q12 in the whole series extended from 34.73 to 35.48 Mb, and encompassed HER2 but not TOP2A. In HER2/TOP2A-co-amplified samples, the SRA extended from 34.73 to 36.54 Mb, spanning a region of B1.8 Mb. Apart from HER2 and TOP2A, this region encompassed four additional genes whose expression levels as defined by quantitative real-time PCR are significantly higher in HER2/TOP2A-co-amplified vs HER2-amplified breast cancers: CASC3, CDC6, RARA and SMARCE1. Of the cell lines studied, SKBR3 and UACC812 showed HER2/TOP2A co-amplification. In conclusion, this is the first detailed genome-wide characterisation of HER2/TOP2A-amplified breast cancers; cell lines were identified that can be used to model these cancers in vitro. The 17q12 amplicon is complex and harbours multiple genes that may be associated with breast cancer development and progression, and potentially exploitable as therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.