The correlation between LS and liver fibrosis was confirmed by the objective measurement of fibrosis area. ALT was significantly correlated with LS, suggesting that inflammatory activity also affects LS values. Despite some limitation, LS measurement is a useful method for the diagnosis of liver fibrosis.
BACKGROUND AND AIMFusobacterium enrichment has been associated with colorectal cancer development. Ulcerative colitis (UC) associated tumorigenesis is characterized as high degree of methylation accumulation through continuous colonic inflammation. The aim of this study was to investigate a potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in UC.METHODSIn the candidate analysis, inflamed colonic mucosa from 86 UC patients were characterized the methylation status of colorectal a panel of cancer related 24 genes. In the genome-wide analysis, an Infinium HumanMethylation450 BeadChip array was utilized to characterize the methylation status of >450,000 CpG sites for fourteen UC patients. Results were correlated with Fusobacterium status.RESULTSUC with Fusobacterium enrichment (FB-high) was characterized as high degree of type C (for cancer-specific) methylation compared to other (FB-low/neg) samples (P<0.01). Genes hypermethylated in FB-high samples included well-known type C genes in colorectal cancer, such as MINT2 and 31, P16 and NEUROG1. Multivariate analysis demonstrated that the FB high status held an increased likelihood for methylation high as an independent factor (odds ratio: 16.18, 95% confidence interval: 1.94-135.2, P=0.01). Genome-wide methylation analysis demonstrated a unique methylome signature of FB-high cases irrespective of promoter, outside promoter, CpG and non-CpG sites. Group of promoter CpG sites that were exclusively hypermethylated in FB-high cases significantly codified the genes related to the catalytic activity (P=0.039).CONCLUSIONOur findings suggest that Fusobacterium accelerates DNA methylation in specific groups of genes in the inflammatory colonic mucosa in UC.
Accumulating data indicates that certain microRNAs (miRNAs or miRs) are differently expressed in samples of tumors and paired non-tumorous samples taken from the same patients with colorectal tumors. We examined the expression of onco-related miRNAs in 131 sporadic exophytic adenomas or early cancers and in 52 sporadic flat elevated adenomas or early cancers to clarify the relationship between the expression of the miRNAs and the endoscopic morphological appearance of the colorectal tumors. The expression levels of miR-143, -145, and -34a were significantly reduced in most of the exophytic tumors compared with those in the flat elevated ones. In type 2 cancers, the miRNA expression profile was very similar to that of the exophytic tumors. The expression levels of miR-7 and -21 were significantly up-regulated in some flat elevated adenomas compared with those in exophytic adenomas. In contrast, in most of the miR-143 and -145 down-regulated cases of the adenoma-carcinoma sequence and in some of the de novo types of carcinoma, the up-regulation of oncogenic miR-7 and/or -21 contributed to the triggering mechanism leading to the carcinogenetic process. These findings indicated that the expression of onco-related miRNA was associated with the morphological appearance of colorectal tumors.
DNA methylation of leukocyte DNA has been proposed to be a biomarker for cancer that can be used to target patients for appropriate clinical implementation. We investigated IGF2 DMR and LINE1 methylation in the leukocyte DNA and their association with clinicopathological features and prognosis of gastric cancer (GC) patients. Methylation status of IGF2 DMR and LINE1 in the leukocyte DNA was quantified using bisulfite pyrosequencing in 207 GC patients. Methylation of both IGF2 DMR and the LINE1 was significantly higher in the undifferentiated histologic type compared to the differentiated histologic type (both P = 0.0002). Hypermethylation of both the IGF2 DMR and the LINE1 was associated with more aggressive features of GC such as advanced stage (IGF2 DMR, P = 0.0002; LINE1, P < 0.0001), lymphatic invasion positive (IGF2 DMR, P = 0.004; LINE1, P = 0.002), venous invasion positive (IGF2 DMR, LINE1, both P = 0.03), lymph node metastasis positive (IGF2 DMR, P = 0.01; LINE1, P = 0.001), peritoneal dissemination positive (IGF2 DMR, P = 0.04; LINE1, P = 0.002), liver metastasis positive (IGF2 DMR, P = 0.008; LINE1, P = 0.001), and other distant metastasis positive (IGF2 DMR, P = 0.04). Our data suggest that high LINE1 and IGF2 DMR methylation status would be a phenomenon that is observed with the progression of GC, supporting their potential utility as a biomarker in GC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.