It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P < 0.05). Moreover, the results noted that plasma enhanced the wound-healing rate in the non-diabetic rats (P < 0.05), and significant wound contraction occurred after the plasma treatment compared with untreated diabetic wounds (P < 0.05). Histological analyses revealed the formation of an epidermis layer, neovascularization and cell proliferation. The plasma treatment also resulted in the release of TGF-β1 cytokine from cells in the tissue medium. The findings of this study demonstrate the effect of plasma treatment for wound healing in diabetic rats.
Metformin could be considered as an alternative therapeutic agent for SCI, as it potentially attenuates neuroinflammation, sensory and locomotor complications of cord injury.
Cyclosporine A (CsA) is known as a neuroprotective agent against cerebral ischemia/reperfusion (I/R) in animal models. However, the significant therapeutic effects of CsA have been observed in high systemic doses or manipulating the blood-brain barrier, resulting in systemic side effects and toxicity. As the liposome nanocarriers have been developed for efficient delivery of peptide and proteins, liposomal CsA (Lipo-CsA) could improve cerebral (I/R) injuries. In this study, the liposomal CsA formulation (CsA at dose of 2.5 mg/kg) was prepared to assess the brain injury outcomes in 90 min middle cerebral artery occlusion (MCAO) stroke model followed by 48 h reperfusion in treating rats. Five minutes after induction of cerebral ischemia in rats, intravenous (iv) administration of Lipo-CsA significantly (P < 0.001) recovered the infarct size, the brain edema, and the neurological activities compared to corresponding control groups following 48 h I/R. In addition, after 48 h cerebral I/R, Lipo-CsA potentially (P < 0.001) inhibited the inflammation responses including MPO activity and tumor necrosis factor-alpha level in comparison to other groups. In conclusion, the results indicate that the low dose of CsA in liposomal formulation is more effective compared to higher dose of free form of CsA in treatment of ischemic brain in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.