Rationale: Myocardial endothelial cells promote cardiomyocyte hypertrophy, possibly through the release of growth factors. The identity of these factors, however, remains largely unknown, and we hypothesized here that the secreted CTRP9 (C1q-tumor necrosis factor–related protein-9) might act as endothelial-derived protein to modulate heart remodeling in response to pressure overload. Objective: To examine the source of cardiac CTRP9 and its function during pressure overload. Methods and Results: CTRP9 was mainly derived from myocardial capillary endothelial cells. CTRP9 mRNA expression was enhanced in hypertrophic human hearts and in mouse hearts after transverse aortic constriction (TAC). CTRP9 protein was more abundant in the serum of patients with severe aortic stenosis and in murine hearts after TAC. Interestingly, heterozygous and especially homozygous knock-out C1qtnf9 (CTRP9) gene-deleted mice were protected from the development of cardiac hypertrophy, left ventricular dilatation, and dysfunction during TAC. CTRP9 overexpression, in turn, promoted hypertrophic cardiac remodeling and dysfunction after TAC in mice and induced hypertrophy in isolated adult cardiomyocytes. Mechanistically, CTRP9 knock-out mice showed strongly reduced levels of activated prohypertrophic ERK5 (extracellular signal-regulated kinase 5) during TAC compared with wild-type mice, while CTRP9 overexpression entailed increased ERK5 activation in response to pressure overload. Inhibition of ERK5 by a dominant negative MEK5 mutant or by the ERK5/MEK5 inhibitor BIX02189 blunted CTRP9 triggered hypertrophy in isolated adult cardiomyocytes in vitro and attenuated mouse cardiomyocyte hypertrophy and cardiac dysfunction in vivo, respectively. Downstream of ERK5, we identified the prohypertrophic transcription factor GATA4, which was directly activated through ERK5-dependent phosphorylation. Conclusions: The upregulation of CTRP9 during hypertrophic heart disease facilitates maladaptive cardiac remodeling and left ventricular dysfunction and might constitute a therapeutic target in the future.
Heart failure is often the consequence of insufficient cardiac regeneration. Neonatal mice retain a certain capability of myocardial regeneration until postnatal day (P)7, although the underlying transcriptional mechanisms remain largely unknown. We demonstrate here that cardiac abundance of the transcription factor GATA4 was high at P1, but became strongly reduced at P7 in parallel with loss of regenerative capacity. Reconstitution of cardiac GATA4 levels by adenoviral gene transfer markedly improved cardiac regeneration after cryoinjury at P7. In contrast, the myocardial scar was larger in cardiomyocyte‐specific Gata4 knockout (CM‐G4‐KO) mice after cryoinjury at P0, indicative of impaired regeneration, which was accompanied by reduced cardiomyocyte proliferation and reduced myocardial angiogenesis in CM‐G4‐KO mice. Cardiomyocyte proliferation was also diminished in cardiac explants from CM‐G4‐KO mice and in isolated cardiomyocytes with reduced GATA4 expression. Mechanistically, decreased GATA4 levels caused the downregulation of several pro‐regenerative genes (among them interleukin‐13, Il13) in the myocardium. Interestingly, systemic administration of IL‐13 rescued defective heart regeneration in CM‐G4‐KO mice and could be evaluated as therapeutic strategy in the future.
A pproximately 5 million Americans have chronic heart failure. 1 The most common causes for the development of chronic heart failure are chronic arterial hypertension, myocardial hypertrophy, and previous myocardial infarction. 1 The progression of heart failure is driven by pathological ventricular remodeling processes, which mainly involve cardiomyocyte hypertrophy, myocardial fibrosis, and profound changes in gene expression that together lead to left ventricular dilation and systolic, and diastolic dysfunction over time. [2][3][4] Despite recent therapeutic advances, the mortality of chronic heart failure remains high, and, a fact that is somewhat neglected, strikingly different between women and men. Women with heart failure have a lower mortality than men and also a better prognosis when experiencing hypertension, aortic valve stenosis, or hypertrophic cardiomyopathy.1,5 Sex hormones might account for these differences, and, indeed, the expression of androgen, and estrogen receptors was found in male and female hearts, implying that estrogen and androgens could directly act on the myocardium. 6,7 Although, in general, estrogen has been deemed cardioprotective, large randomized and controlled studies have failed to demonstrate the beneficial effects of estrogen therapy in postmenopausal women. 8,9 As a consequence, it is now proposed that the rise in cardiovascular mortality in women after the onset of menopause might be caused by an increased ovarian production of testosterone. 10 Clinical Perspective on p 1081Testosterone and its highly active metabolite dihydrotestosterone (DHT) operate by binding to the androgen receptor, Background-In comparison with men, women have a better prognosis when experiencing aortic valve stenosis, hypertrophic cardiomyopathy, or heart failure. Recent data suggest that androgens like testosterone or the more potent dihydrotestosterone contribute to the development of cardiac hypertrophy and failure. Therefore, we analyzed whether antiandrogenic therapy with finasteride, which inhibits the generation of dihydrotestosterone by the enzyme 5-α-reductase, improves pathological ventricular remodeling and heart failure. Methods and Results-We found a strongly induced expression of all 3 isoforms of the 5-α-reductase (Srd5a1 to Srd5a3) in human and mouse hearts with pathological hypertrophy, which was associated with increased myocardial accumulation of dihydrotestosterone. Starting 1 week after the induction of pressure overload by transaortic constriction, mice were treated with finasteride for 2 weeks. Cardiac function, hypertrophy, dilation, and fibrosis were markedly improved in response to finasteride treatment in not only male, but also in female mice. In addition, finasteride also very effectively improved cardiac function and mortality after long-term pressure overload and prevented disease progression in cardiomyopathic mice with myocardial Gαq overexpression. Mechanistically, finasteride, by decreasing dihydrotestosterone, potently inhibited hypertrophy and Akt-dependent p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.