Monitoring and evaluation are central to ensuring that innovative, multi-scale, and interdisciplinary approaches to sustainability are effective. The development of relevant indicators for local sustainable management outcomes, and the ability to link these to broader national and international policy targets, are key challenges for resource managers, policymakers, and scientists. Sets of indicators that capture both ecological and social-cultural factors, and the feedbacks between them, can underpin cross-scale linkages that help bridge local and global scale initiatives to increase resilience of both humans and ecosystems. Here we argue that biocultural approaches, in combination with methods for synthesizing across evidence from multiple sources, are critical to developing metrics that facilitate linkages across scales and dimensions. Biocultural approaches explicitly start with and build on local cultural perspectives - encompassing values, knowledges, and needs - and recognize feedbacks between ecosystems and human well-being. Adoption of these approaches can encourage exchange between local and global actors, and facilitate identification of crucial problems and solutions that are missing from many regional and international framings of sustainability. Resource managers, scientists, and policymakers need to be thoughtful about not only what kinds of indicators are measured, but also how indicators are designed, implemented, measured, and ultimately combined to evaluate resource use and well-being. We conclude by providing suggestions for translating between local and global indicator efforts.
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two ‘ridge-to-reef’ systems (Hā‘ena and Ka‘ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka‘ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā‘ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka‘ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.
Through research, restoration of agro-ecological sites, and a renaissance of cultural awareness in Hawaiʻi, there has been a growing recognition of the ingenuity of the Hawaiian biocultural resource management system. The contemporary term for this system, “the ahupuaʻa system”, does not accurately convey the nuances of system function, and it inhibits an understanding about the complexity of the system’s management. We examined six aspects of the Hawaiian biocultural resource management system to understand its framework for systematic management. Based on a more holistic understanding of this system’s structure and function, we introduce the term, “the moku system”, to describe the Hawaiian biocultural resource management system, which divided large islands into social-ecological regions and further into interrelated social-ecological communities. This system had several social-ecological zones running horizontally across each region, which divided individual communities vertically while connecting them to adjacent communities horizontally; and, thus, created a mosaic that contained forested landscapes, cultural landscapes, and seascapes, which synergistically harnessed a diversity of ecosystem services to facilitate an abundance of biocultural resources. “The moku system”, is a term that is more conducive to large-scale biocultural restoration in the contemporary period, while being inclusive of the smaller-scale divisions that allowed for a highly functional system.
Here, we expand on the term "ecomimicry" to be an umbrella concept for an approach to adaptive ecosystem-based management of social-ecological systems that simultaneously optimizes multiple ecosystem services for the benefit of people and place. In this context, we define ecomimicry as a strategy for developing and managing cultural landscapes, built upon a deep understanding of the structure and function of ecosystems, that harnesses ecosystem processes for the purpose of balancing and sustaining key ecosystem services, rather than maximizing one service (e.g., food production) to the detriment of others. Ecomimicry arises through novel, place-based innovations or is adopted from elsewhere and adapted to local conditions. Similarly, precontact Hawaiian socialecological systems integrated a variety of ecomimicry schema to engender a complex system of adaptive resource management that enhanced biocultural diversity and supported resilient food systems, ultimately sustaining a thriving human population. In addition to presenting a synopsis of how ecomimicry was employed in the design and management of Hawaiian social-ecological systems, we identify and characterize specific ecomimicry applications. Within this context, we explore a revival of ecomimicry for biological conservation, biocultural restoration, resilience, and food security. We conclude with a discussion of how revitalizing such an approach in the restoration of social-ecological systems may address issues of conservation and sustainability in the Anthropocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.