Docetaxel-conjugate nanoparticles, known as Cellax, were synthesized by covalently conjugating docetaxel and polyethylene glycol to acetylated carboxymethylcellulose via ester linkages, yielding a polymeric conjugate that self-assembled into 120 nm particles suitable for intravenous administration. In 4T1 and MDA-MB-231 orthotopic breast tumor models, Cellax therapy reduced a-smooth muscle actin (a-SMA) content by 82% and 70%, respectively, whereas native docetaxel and nab-paclitaxel (albumin-paclitaxel nanoparticle, Abraxane) exerted no significant antistromal activity. In Cellax-treated mice, tumor perfusion was increased by approximately 70-fold (FITC-lectin binding), tumor vascular permeability was enhanced by more than 30% (dynamic contrast-enhanced magnetic resonance imaging), tumor matrix was decreased by 2.5-fold (immunohistochemistry), and tumor interstitial fluid pressure was suppressed by approximately 3-fold after Cellax therapy compared with the control, native docetaxel, and nab-paclitaxel groups. The antistromal effect of Cellax treatment corresponded to a significantly enhanced antimetastatic effect: lung nodules were reduced by 7-to 24-fold by Cellax treatment, whereas native docetaxel and nab-paclitaxel treatments were ineffective. Studies of the 4T1 tumor showed that more than 85% of the Cellax nanoparticles were delivered to the a-SMAþ stroma. Significant tumor stromal depletion occurred within 16 hours ($50% depletion) postinjection, and the a-SMAþ stroma population was almost undetectable ($3%) by 1 week. The 4T1 tumor epithelial cell population was not significantly reduced in the week after Cellax injection. These data suggest that Cellax targets tumor stroma and performs more efficaciously than docetaxel and nabpaclitaxel. Cancer Res; 73(15); 4862-71. Ó2013 AACR.
Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, we have developed a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate. Negatively charged alginate was used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ~30w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.