Wastewater treatment is an essential public service that has a major impact on energy use in the urban water cycle, thus receiving increasing attention in context of the Water-Energy Nexus. Understanding the current energy use for wastewater is an essential step to design reliable policies promoting a more efficient use of resources. This paper develops a pan European estimation of electricity use for the treatment of wastewater, based on a dataset of wastewater treatment plants (WWTPs) across the continent. Prediction of electricity use has been performed using a statistical model that accounts for economies of scale. Different scenarios of improvements of energy use efficiency have been investigated to understand the possible reductions in electricity consumption at the continental scale. The overall WWTP electricity use in Europe (only plants with no less than 2000 population equivalent (PE) have been considered) was estimated at 24 747 GWh yr −1 , about the 0.8% of the electricity consumption in the EU-28. Small plants (less than 50 000 PE) represent almost 90% of the total number of plants, but process only 31% of the PE and require 42% of electricity use. Plants from mid to very large size (more than 50 000 PE), being only 10% of the plants, process about 70% of the PE with 58% of the total electricity use. If all plants that use more than the current average were shifted to the average value, the saving would be slightly more than 5500 GWh yr −1 . With highly stringent targets of efficiency improvement, saving of about 13 500 GWh yr −1 could be expected. Further considerations on the emerging role of WWTPs as energy and material producer are finally discussed.
In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.