denotes emergency department, and IQR interquartile range. † Race was determined by the clinical team. ‡ Obesity was defined as a body-mass index (the weight in kilograms divided by the square of the height in meters) of 30 or higher.
Endorsed by the American Association of Critical-Care Nurses and the Society of Critical Care Medicine Public health emergencies have the potential to place enormous strain on health systems. The current pandemic of the novel 2019 coronavirus disease has required hospitals in numerous countries to expand their surge capacity to meet the needs of patients with critical illness. When even surge capacity is exceeded, however, principles of critical care triage may be needed as a means to allocate scarce resources, such as mechanical ventilators or key medications. The goal of a triage system is to direct limited resources towards patients most likely to benefit from them. Implementing a triage system requires careful coordination between clinicians, health systems, local and regional governments, and the public, with a goal of transparency to maintain trust. We discuss the principles of tertiary triage and methods for implementing such a system, emphasizing that these systems should serve only as a last resort. Even under triage, we must uphold our obligation to care for all patients as best possible under difficult circumstances.
Background Between 5 and 25 April 2009, pandemic (H1N1) 2009 caused a substantial, severe outbreak in Mexico, and subsequently developed into the first global pandemic in 41 years. We determined the reproduction number of pandemic (H1N1) 2009 by analyzing the dynamics of the complete case series in Mexico City during this early period. Methods We analyzed three mutually exclusive datasets from Mexico City Distrito Federal which constituted all suspect cases from 15 March to 25 April: confirmed pandemic (H1N1) 2009 infections, non‐pandemic influenza A infections and patients who tested negative for influenza. We estimated the initial reproduction number from 497 suspect cases identified prior to 20 April, using a novel contact network methodology incorporating dates of symptom onset and hospitalization, variation in contact rates, extrinsic sociological factors, and uncertainties in underreporting and disease progression. We tested the robustness of this estimate using both the subset of laboratory‐confirmed pandemic (H1N1) 2009 infections and an extended case series through 25 April, adjusted for suspected ascertainment bias. Results The initial reproduction number (95% confidence interval range) for this novel virus is 1·51 (1·32–1·71) based on suspected cases and 1·43 (1·29–1·57) based on confirmed cases before 20 April. The longer time series (through 25 April) yielded a higher estimate of 2·04 (1·84–2·25), which reduced to 1·44 (1·38–1·51) after correction for ascertainment bias. Conclusions The estimated transmission characteristics of pandemic (H1N1) 2009 suggest that pharmaceutical and non‐pharmaceutical mitigation measures may appreciably limit its spread prior the development of an effective vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.