BackgroundDiet is an important environmental factor that interacts with genes to modulate the likelihood of developing disorders in lipid metabolism and the relationship between diet and genes in the presence of other chronic diseases such as obesity. The objective of this study was to analyze the interaction of a high fat diet with the APOA2 (rs3813627 and rs5082), APOA5 (rs662799 and rs3135506) and LEPR (rs8179183 and rs1137101) polymorphisms and its relationship with obesity and dyslipidemia in young subjects.MethodsThe study included 200 young subjects aged 18 to 25 years (100 normal-weight and 100 obese subjects). Dietary fat intake was measured using the frequency food consumption questionnaire. Genotyping of polymorphisms was performed by PCR-RFLP.ResultsIndividuals carrying the APOA5 56 G/G genotype with a high saturated fatty acid consumption (OR = 2.7, p = 0.006) and/or total fat (OR = 2.4, p = 0.018), associated with an increased risk of obesity. We also found that A/G + G/G genotypes of the 668 A/G polymorphism in the LEPR gene with an intake ≥12 g/d of saturated fatty acids, have 2.9 times higher risk of obesity (p = 0.002), 3.8 times higher risk of hypercholesterolemia (p = 0.002) and 2.4 times higher risk of hypertriglyceridemia (p = 0.02), than those with an intake <12 g/d of saturated fatty acids. Similarly, LEPR 668 A/G + G/G carriers with a high fat total intake had 3.0 times higher risk of obesity (p = 0.002) and 4.1 times higher risk of hypercholesterolemia (p = 0.001).ConclusionOur results suggest that dietary fat intake modifies the effect of APOA5 and LEPR polymorphisms on serum triglycerides, cholesterol levels and obesity in young subjects.
BackgroundCardiovascular disease (CVD) results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis. Atherosclerosis is the major cause of CVD. CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and promote endocytosis of oxidized low-density lipoprotein (oxLDL) and is implicated in the formation of foam cells. The purpose of this research was to evaluate whether there is an association of sCD36 and oxLDL levels with cardiovascular risk factors in young subjects.MethodsA total of 188 subjects, 18 to 25 years old, 133 normal-weight and 55 obese subjects from the state of Guerrero, Mexico were recruited in the study. The lipid profile and glucose levels were measured by enzymatic colorimetric assays. Enzyme-linked immunosorbant assays (ELISA) for oxLDL and sCD36 were performed. Statistical analyses of data were performed with Wilcoxon- Mann Whitney and chi-square tests as well as with multinomial regression.ResultsTC, LDL-C, TG, oxLDL and sCD36 levels were higher in obese subjects than in normal-weight controls, as well as, monocyte and platelet counts (P < 0.05). Obese subjects had 5.8 times higher risk of sCD36 in the third tertil (>97.8 ng/mL) than normal-weight controls (P = 0.014), and 7.4 times higher risk of oxLDL levels in third tertile (>48 U/L) than control group. The subjects with hypercholesterolemia, hypertriglyceridemia, fasting impaired LDL-C had a higher risk of oxLDL levels in the third tertile (>48 U/L) than the control group (P < 0.05).ConclusionsCirculating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects and may be potential early markers for cardiovascular disease (CVD).
Background: The gut microbiota plays an important role in human metabolism; previous studies suggest that the imbalance can cause a metabolic endotoxemia that may be linked to weight gain and insulin resistance. The purpose of this study was to investigate the relationship between the gut microbiota composition, the lipopolysaccharide levels and the metabolic profile in obese and normal-weight young subjects. Methods: We studied 32 obese (BMI ≥ 30 kg/m2) and 32 normal-weight subjects (BMI = 18.5-24.9 kg/m2), aged 18-25 years. Quantification of intestinal bacteria was performed by real-time PCR. Endotoxin units were determined with the test QCL-1000, and biochemical profile was performed under a standard protocol of Spinreact. Results: Obese individuals had a BMI of 34.5 (32.9-36.45) kg/m2, increased triglycerides (123 vs. 70 mg/dl), total cholesterol (168 vs. 142 mg/dl), and LDL-cholesterol (114 vs. 96.5 mg/dl). In obese subjects body temperature was higher than in normal-weight subjects. We found a greater number of Clostridum leptum and Lactobacillus (p < 0.001) and lower numbers of Prevotella and Escherichia coli (p < 0.001) in the obese group. A decrease of E. coli was associated with an increased risk of lipopolysaccharide levels ranging from 1 to 1.3 EU/ml. A positive correlation was found between serum lipopolysaccharides and BMI (r = 0.46, p = 0.008), triglyceride levels (r = 0.44, p = 0.011) as well as waist circumference (r = 0.34, p = 0.040), being more evident in young obese females. Conclusion: Subclinical metabolic endotoxemia determined by serum concentration of lipopolysaccharides was related to the smallest amount of E. coli, high triglyceride levels, and central adiposity in obese young persons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.