Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single donor enabled identification of the clonal distribution of T cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of shared cell types across tissues. Cell type–specific RNA splicing was discovered and analyzed across tissues within an individual.
Highlights d GSK-3b inhibition-mediated hiPSC-cardiomyocyte proliferation is cell density dependent d GSK-3b inhibition with reduced cell-cell contact massively expands hiPSC-cardiomyocytes d LEF/TCF activity inhibits hiPSC-cardiomyocyte maturation without promoting cell cycling d Long-term expansion does not alter cardiomyocyte contractile function
Fibroblasts are cells with a structural function, synthesizing components of the extracellular matrix. They are accordingly associated with various forms of connective tissue. During cardiac development fibroblasts originate from different sources. Most derive from the epicardium, some derive from the endocardium, and a small population derives from the neural crest. Cardiac fibroblasts have important functions during development, homeostasis, and disease. However, since fibroblasts are a very heterogeneous cell population no truly specific markers exist. Therefore, studying them in detail is difficult. Nevertheless, several lineage tracing models have been widely used. In this review, we describe the developmental origins of cardiac fibroblasts, comment on fibroblast markers and related lineage tracing approaches, and discuss the cardiac cell composition, which has recently been revised, especially in terms of non-myocyte cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.