The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machinereadable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. INTRODUCTIONIn light of the vast scientific resources made available through genomics, the science of deciphering molecular mechanisms is expanding rapidly. Scientists who once hunted for disease genes or sought to distinguish key concepts in evolution are now turning their attention to the details of molecular assembly and mechanism to further understand medicine and the key concepts underlying biology. The Biomolecular Interaction Network Database (BIND) was designed to store complete information about molecular assembly through a database structure in order to archive interactions and reactions arising from biopolymers (protein, RNA and DNA), as well as small molecules, lipids and carbohydrates. Detailed information about molecular mechanism, such as the chemical product(s) of an enzymatic reaction, can be encoded in BIND. The underlying ontology of the BIND database is chemistry, and as such, BIND is capable of storing information about molecular interactions to atomic resolution. The taxonomic scope of BIND is
Significance Macrolide antibiotics inhibit translation by binding in the ribosomal nascent peptide exit tunnel. It was believed that macrolides interfere with protein synthesis by obstructing the egress of nascent proteins. In contrast to this view, the results of ribosome profiling analysis suggest that the main mode of macrolide action is context-specific inhibition of peptide bond formation. The ribosome with a macrolide molecule bound in the tunnel is impaired in catalysis of peptide bond formation between specific combinations of the peptidyl donors and aminoacyl acceptors, leading to interruption of translation when such problematic substrates are encountered. These findings underscore the existence of a link between the ribosomal tunnel and the peptidyl transferase center and pave the way for development of superior antibiotics.
IMPORTANCEThe National COVID Cohort Collaborative (N3C) is a centralized, harmonized, highgranularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy.OBJECTIVES To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. DESIGN, SETTING, AND PARTICIPANTSIn a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). MAIN OUTCOMES AND MEASURESPatient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. RESULTSThe cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472(18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, (continued) Key Points Question In a US data resource large enough to adjust for multiple confounders, what risk factors are associated with COVID-19 severity and severity trajectory over time, and can machine learning models predict clinical severity? Findings In this cohort study of 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized and 6565 (20.2%) were severely ill, and first-day machine learning models accurately predicted clinical severity. Mortality was 11.6%
Robust methods for identifying patterns of expression in genome-wide data are important for generating hypotheses regarding gene function. To this end, several analytic methods have been developed for detecting periodic patterns. We improve one such method, JTK_CYCLE, by explicitly calculating the null distribution such that it accounts for multiple hypothesis testing and by including non-sinusoidal reference waveforms. We term this method empirical JTK_CYCLE with asymmetry search, and we compare its performance to JTK_CYCLE with Bonferroni and Benjamini-Hochberg multiple hypothesis testing correction, as well as to five other methods: cyclohedron test, address reduction, stable persistence, ANOVA, and F24. We find that ANOVA, F24, and JTK_CYCLE consistently outperform the other three methods when data are limited and noisy; empirical JTK_CYCLE with asymmetry search gives the greatest sensitivity while controlling for the false discovery rate. Our analysis also provides insight into experimental design and we find that, for a fixed number of samples, better sensitivity and specificity are achieved with higher numbers of replicates than with higher sampling density. Application of the methods to detecting circadian rhythms in a metadataset of microarrays that quantify time-dependent gene expression in whole heads of Drosophila melanogaster reveals annotations that are enriched among genes with highly asymmetric waveforms. These include a wide range of oxidation reduction and metabolic genes, as well as genes with transcripts that have multiple splice forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.