The Sterile Insect Technique is a species-specific and environmentally friendly method of pest control involving mass release of sterilized insects that reduce the wild population through infertile matings. Insects carrying a female-specific autocidal genetic system offer an attractive alternative to conventional sterilization methods while also eliminating females from the release population. We exploited sex-specific alternative splicing in insects to engineer female-specific autocidal genetic systems in the Mediterranean fruit fly, Ceratitis capitata. These rely on the insertion of cassette exons from the C. capitata transformer gene into a heterologous tetracycline-repressible transactivator such that the transactivator transcript is disrupted in male splice variants but not in the female-specific one. As the key components of these systems function across a broad phylogenetic range, this strategy addresses the paucity of sex-specific expression systems (e.g., early-acting, female-specific promoters) in insects other than Drosophila melanogaster. The approach may have wide applicability for regulating gene expression in other organisms, particularly for combinatorial control with appropriate promoters.
The Sterile Insect Technique (SIT) used to control insect pests relies on the release of large numbers of radiation-sterilized insects. Irradiation can have a negative impact on the subsequent performance of the released insects and therefore on the cost and effectiveness of a control program. This and other problems associated with current SIT programs could be overcome by the use of recombinant DNA methods and molecular genetics. Here we describe the construction of strains of the Mediterranean fruit fly (medfly) harboring a tetracycline-repressible transactivator (tTA) that causes lethality in early developmental stages of the heterozygous progeny but has little effect on the survival of the parental transgenic tTA insects. We show that these properties should prove advantageous for the implementation of insect pest control programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.