Preclinical or clinical trials for muscular dystrophies have met with modest success, mainly because of inefficient delivery of viral vectors or donor cells to dystrophic muscles. We report here that intra-arterial delivery of wild-type mesoangioblasts, a class of vessel-associated stem cells, corrects morphologically and functionally the dystrophic phenotype of virtually all downstream muscles in adult immunocompetent alpha-sarcoglycan (alpha-SG) null mice, a model organism for limb-girdle muscular dystrophy. When mesoangioblasts isolated from juvenile dystrophic mice and transduced with a lentiviral vector expressing alpha-SG were injected into the femoral artery of dystrophic mice, they reconstituted skeletal muscle in a manner similar to that seen in wild-type cells. The success of this protocol was mainly due to widespread distribution of donor stem cells through the capillary network, a distinct advantage of this strategy over previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.