Two reconstructions of spring (May-June) precipitation have been developed for southwestern Turkey. The first reconstruction (1776-1998) was developed from principal components of nine chronologies of Cedrus libani, Juniperus excelsa, Pinus brutia, and Pinus nigra. The second reconstruction (1339-1998) was derived from principal components of three J. excelsa chronologies. Calibration and verification statistics of both reconstructions indicate reasonably accurate reconstruction of spring precipitation for southwestern Turkey, and show clear evidence of multi-year to decadal variations in spring precipitation. The longest period of reconstructed spring drought, defined as consecutive years with less than 80% of normal May-June precipitation, was 4 years (1476-79). Only one drought event of this duration has occurred during the last six centuries. Monte Carlo analysis indicates a less than 33% probability that southwestern Turkey has experienced spring drought longer than 5 years in the past 660 years. Apart from the 1476-79 extended dry period, spring droughts of 3 years in length have only occurred from 1700 to the present. The longest reconstructed wet period, defined as consecutive years with more than 120% of normal May-June precipitation, was 4 years (1532-35). The absence of extended spring drought during the 16th and 17th centuries and the occurrence of extended wet spring periods during these centuries suggest a possible regime shift in climate. Preliminary analysis of links between large-scale climatic variation and these climate reconstructions shows that there is a relationship between extremes in spring precipitation and anomalous atmospheric circulation in the region.
A May–June precipitation reconstruction (AD 1097–2000) has been developed for southwestern Anatolia in Turkey, the longest reported to date in this region. The reconstruction was derived from a regional Juniperus excelsa chronology that was built from material sampled at four sites in the Antalya and Mersin Districts. The regional tree-ring chronology accounts for 51% of the variance of instrumentally observed May–June precipitation. The years AD 1518 to 1587 are the most humid period in the reconstruction, coinciding with a major shift in European climate. The driest 70-year period in the reconstruction is AD 1195 to 1264. The period AD 1591–1660 represents the third driest and was characterized by instability climatically, politically, and socially in Anatolia.
May-July Standardized Precipitation Index (SPI) for the land area of most of Turkey and some adjoining regions are reconstructed from tree rings for the period 1251-1998. The reconstruction was developed from principal components analysis (PCA) of four Juniperus excelsa chronologies from southwestern and south-central Turkey and is based on reliable and replicable statistical relationships between climate and tree ring growth. The SPI reconstruction shows climate variability on both interannual and interdecadal time scales. The longest period of consecutive drought years in the reconstruction (SPI threshold ≤−1) is 2 yr. These occur in 1607-1608, 1675-1676, and 1907-1908. There are five wet events (SPI threshold ≥+1) of two consecutive years each (). A 5-yr moving average of the reconstructed SPI shows that two sustained drought periods occurred from the mid to late 1300s and the early to mid 1900s. Both episodes are characterized by low variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.