Large-scale multi-ethnic cohorts offer unprecedented opportunities to elucidate the genetic factors influencing complex traits related to health and disease among minority populations. At the same time, the genetic diversity in these cohorts presents new challenges for analysis and interpretation. We consider the utility of race and/or ethnicity categories in genome-wide association studies (GWASs) of multi-ethnic cohorts. We demonstrate that race/ethnicity information enhances the ability to understand population-specific genetic architecture. To address the practical issue that self-identified racial/ethnic information may be incomplete, we propose a machine learning algorithm that produces a surrogate variable, termed HARE. We use height as a model trait to demonstrate the utility of HARE and ethnicity-specific GWASs.
This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in
In this proof-of-concept study, we demonstrated application of the PheWAS using large EHR biobanks to inform drug effects. The findings of an association of the IL6R SNP with reduced risk for aortic aneurysms correspond with the newest indication for IL6R blockade, giant cell arteritis, of which a major complication is aortic aneurysm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.