Di Marco, A. et al. (2017) Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC: Heart Failure, 5(1), pp. 28-38. (doi:10.1016/j.jchf.2016.09.017) This is the author's final accepted version.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/133553/ Background: Risk stratification for SCD in DCM needs to be improved.
Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure based on their secretion-mediated "paracrine effects". Feasibility of the scaffoldless cell sheet technique to enhance the outcome of cell transplantation has been reported using other cell types, though the mechanism underpinning the enhancement remains uncertain. We here investigated the role of this innovative technique to amplify the effects of MSC transplantation with a focus on the underlying factors. After coronary artery ligation in rats, syngeneic MSCs were grafted by either epicardial placement of MSC sheets generated using temperature-responsive dishes or intramyocardial (IM) injection. Markedly increased initial retention boosted the presence of donor MSCs persistently after MSC sheet placement although the donor survival was not improved. Most of the MSCs grafted by the cell sheet technique remained resided on the epicardial surface, but the epicardium quickly regressed and new vessels sprouted into the sheets, assuring the permeation of paracrine mediators from MSCs into the host myocardium. In fact, there was augmented upregulation of various paracrine effect-related genes and signaling pathways in the early phase after MSC sheet therapy. Correspondingly, more extensive paracrine effects and resultant cardiac function recovery were achieved by MSC sheet therapy. Further development of this approach towards clinical application is encouraged.
Transplantation of bone marrow mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure. We have reported that epicardial placement of MSC-sheets generated using temperature-responsive dishes markedly increases donor MSC survival and augments therapeutic effects in an acute myocardial infarction (MI) model, compared to intramyocardial (IM) injection. This study aims to expand this knowledge for the treatment of ischemic cardiomyopathy, which is likely to be more difficult to treat due to mature fibrosis and chronically stressed myocardium. Four weeks after MI, rats underwent either epicardial MSC-sheet placement, IM MSC injection, or sham treatment. At day 28 after treatment, the cell-sheet group showed augmented cardiac function improvement, which was associated with over 11-fold increased donor cell survival at both days 3 and 28 compared to IM injection. Moreover, the cell-sheet group showed improved myocardial repair, in conjunction with amplified upregulation of a group of reparative factors. Furthermore, by comparing with our own previous data, this study highlighted similar dynamics and behavior of epicardially placed MSCs in acute and chronic stages after MI, while the acute-phase myocardium may be more responsive to the stimuli from donor MSCs. These proof-of-concept data encourage further development of the MSC-sheet therapy for ischemic cardiomyopathy toward clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.