Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4–6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7–9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12–14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.
Background and Aims Delineating closely related and morphologically similar species is difficult. Here, we integrate morphology, genetics, ploidy and geography to resolve species and subspecies boundaries in four trees of section Costatae (genus Betula): Betula ashburneri, B. costata, B. ermanii and B. utilis as well as multiple subspecies and polyploid races. Methods We genotyped 371 individuals (20-133 per species) from 51 populations at 15 microsatellite markers, as well as a subset of individuals using restriction-site associated DNA sequencing and nuclear internal transcribed spacers. We determined the ploidy level of eight individuals using flow cytometry and characterized leaf variation for a subset of 89 individuals by morphometric analysis. Key Results Integration of multiple lines of evidence suggested a series of revisions to section Costatae taxonomy. Betula costata and B. ermanii were found to be valid. Molecular and leaf morphology analyses revealed little differentiation between diploid B. albosinensis and some samples of B. utilis ssp. utilis. Whereas other B. utilis ssp. utilis samples and ssp. albosinensis formed a morphological continuum but differed based on genetics. Specifically, B. utilis ssp. albosinensis was divided into two groups with group I genetically similar to B. utilis ssp. utilis and group II, a distinct cluster, proposed as the new diploid species Betula buggsii. Phylogenomic analysis based on 2,285,620 SNPs identified a well-supported monophyletic clade of B. buggsii. Morphologically, B. buggsii is characterized by elongated lenticels and a distinct pattern of bark peeling and may be geographically restricted to the Qinling-Daba Mountains. Conclusions Our integrated approach identifies six taxa within section Costatae: B. ashburneri, B. buggsii, B. costata, B. utilis ssp. utilis, B. utilis ssp. albosinensis and B. ermanii. Our research demonstrates the value of an integrative approach using morphological, geographic, genetic and ploidy level data for species delineation.
Disentangling the numerous processes that affect patterns of genome‐wide diversity in widespread tree species has important implications for taxonomy, conservation, and forestry. Here, we investigate the population genomic structure of Asian white birch (Betula platyphylla) in China and seek to explain it in terms of hybridization, demography and adaptation. We generate whole genome sequence data from 83 individuals across the species range in China. Combining this with an existing data set for 79 European and Russian white birches, we show a clear distinction between B. pendula and B. platyphylla, which have sometimes been lumped taxonomically. Genomic diversity of B. platyphylla in north‐western China and Central Russia is affected greatly by hybridization with B. pendula. Excluding these hybridized populations, B. platyphylla in China has a linear distribution from north‐eastern to south‐western China, along the edge of the inland mountainous region. Within this distribution, three genetic clusters are found, which we model as long diverged with subsequent episodes of gene flow. Patterns of covariation between allele frequencies and environmental variables in B. platyphylla suggest the role of natural selection in the distribution of diversity at 7609 SNPs of which 3767 were significantly differentiated among the genetic clusters. The putative adaptive SNPs are distributed throughout the genome and span 1633 genic regions. Of these genic regions, 87 were previously identified as candidates for selective sweeps in Eurasian B. pendula. We use the 7609 environmentally associated SNPs to estimate the risk of nonadaptedness for each sequenced B. platyphylla individual under a scenario of future climate change, highlighting areas where populations may be under future threat from rising temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.